;;
;; $Id$
;;
;; Third derivative d^3 / dz^3
;; - 6th-order (9-point stencil) for inner grid cells
;; - 4th-order (7-point stencil) for non-periodic boundary grid cells
;
; 12-Oct-2014/Bourdin.KIS: coded
;
function zder3,f,ghost=ghost,bcx=bcx,bcy=bcy,bcz=bcz,param=param,t=t
COMPILE_OPT IDL2,HIDDEN
;
common cdat, x, y, z, mx, my, mz, nw, ntmax, date0, time0, nghostx, nghosty, nghostz
common cdat_grid,dx_1,dy_1,dz_1,dx_tilde,dy_tilde,dz_tilde,lequidist,lperi,ldegenerated
common cdat_coords, coord_system
common pc_precision, zero, one, precision, data_type, data_bytes, type_idl
;
; Default values.
;
default, one, 1.d0
default, ghost, 0
;
; Calculate fmx, fmy, and fmz, based on the input array size.
;
s = size(f)
if ((s[0] lt 3) or (s[0] gt 4)) then $
message, 'zder3_6th_ghost: not implemented for '+strtrim(s[0],2)+'-D arrays'
d = make_array(size=s)
fmx = s[1] & fmy = s[2] & fmz = s[3]
l1 = nghostx & l2 = fmx-nghostx-1
m1 = nghosty & m2 = fmy-nghosty-1
n1 = nghostz & n2 = fmz-nghostz-1
;
; Check for degenerate case (no x-derivative)
;
if (ldegenerated[0] or (fmx eq 1)) then return, d
;
if (lequidist[1]) then begin
fdz = dz_1[l1]^3/240.
endif else begin
if (fmx ne mx) then $
message, "zder3_6th_ghost: not implemented for subvolumes on a non-equidistant grid in x."
fdz = one/240.
endelse
;
if (lperi[1]) then begin
d[l1:l2,m1:m2,n1:n2,*] = $
(488.*fdz)*(f[l1-1:l2-1,m1:m2,n1:n2,*]-f[l1+1:l2+1,m1:m2,n1:n2,*]) $
- (338.*fdz)*(f[l1-2:l2-2,m1:m2,n1:n2,*]-f[l1+2:l2+2,m1:m2,n1:n2,*]) $
+ (72.*fdz)*(f[l1-3:l2-3,m1:m2,n1:n2,*]-f[l1+3:l2+3,m1:m2,n1:n2,*]) $
- (7.*fdz)*(shift (f[l1:l2,m1:m2,n1:n2,*], 0, 0, -4, 0)-shift (f[l1:l2,m1:m2,n1:n2,*], 0, 0, +4, 0))
end else begin
; inner grid points (6th order)
d[l1+1:l2-1,m1:m2,n1:n2,*] = $
(488.*fdz)*(f[l1-0:l2-2,m1:m2,n1:n2,*]-f[l1+2:l2+0,m1:m2,n1:n2,*]) $
- (338.*fdz)*(f[l1-1:l2-3,m1:m2,n1:n2,*]-f[l1+3:l2+1,m1:m2,n1:n2,*]) $
+ (72.*fdz)*(f[l1-2:l2-4,m1:m2,n1:n2,*]-f[l1+4:l2+2,m1:m2,n1:n2,*]) $
- (7.*fdz)*(f[l1-3:l2-5,m1:m2,n1:n2,*]-f[l1+5:l2+3,m1:m2,n1:n2,*])
; boundary grid points (4th order)
; −49/8 29 −461/8 62 −307/8 13 −15/8
d[l1,m1:m2,n1:n2,*] = $
(14880.*fdz)*f[l1,m1:m2,n1:n2,*] $
-(13830.*fdz)*f[l1-1,m1:m2,n1:n2,*]-(9210.*fdz)*f[l1+1,m1:m2,n1:n2,*] $
+ (6960.*fdz)*f[l1-2,m1:m2,n1:n2,*]+(3120.*fdz)*f[l1+2,m1:m2,n1:n2,*] $
- (1470.*fdz)*f[l1-3,m1:m2,n1:n2,*]- (450.*fdz)*f[l1+3,m1:m2,n1:n2,*]
d[l2,m1:m2,n1:n2,*] = $
(14880.*fdz)*f[l2,m1:m2,n1:n2,*] $
-(13830.*fdz)*f[l1-1,m1:m2,n1:n2,*]-(9210.*fdz)*f[l1+1,m1:m2,n1:n2,*] $
+ (6960.*fdz)*f[l1-2,m1:m2,n1:n2,*]+(3120.*fdz)*f[l1+2,m1:m2,n1:n2,*] $
- (1470.*fdz)*f[l1-3,m1:m2,n1:n2,*]- (450.*fdz)*f[l1+3,m1:m2,n1:n2,*]
end
;
if (not lequidist[0]) then begin
; Nonuniform mesh correction:
; d3f(xi)/dz3 = f'''*xi'^3 + 3*f"*xi'*xi" + f'*xi'''
; will also work on subvolumes like zder3(ss[*,10:16,20:26])
df_dz = zder(f)
d2f_dz2 = zder2(f)
d[l1:l2,m1:m2,n1:n2,*] *= dz_1[l1:l2]^3
message, "zder3: 'd2xi_dz2' is not yet implemented, needs more than 'dz_tilde'..."
df_dz[l1:l2,m1:m2,n1:n2,*] *= d2xi_dz2[l1:l2]
d2f_dz2[l1:l2,m1:m2,n1:n2,*] *= dz_tilde[l1:l2]
d += df_dz
endif
;
; Set ghost zones.
;
if (ghost) then d=pc_setghost(d,bcx=bcx,bcy=bcy,bcz=bcz,param=param,t=t)
;
return, d
;
end