;; ;; $Id$ ;; ;; Second derivative d^2 / dy dx =^= yder (xder (f)) ;; - 6th-order ;; - with ghost cells ;; function yderxder,f,ghost=ghost,bcx=bcx,bcy=bcy,bcz=bcz,param=param,t=t COMPILE_OPT IDL2,HIDDEN ; common cdat, x, y, z, mx, my, mz, nw, ntmax, date0, time0, nghostx, nghosty, nghostz common cdat_grid,dx_1,dy_1,dz_1,dx_tilde,dy_tilde,dz_tilde,lequidist,lperi,ldegenerated common cdat_coords, coord_system common pc_precision, zero, one, precision, data_type, data_bytes, type_idl ; ; Default values. ; default, one, 1.d0 default, ghost, 0 ; ;AB: the following should not be correct ; if (coord_system ne 'cartesian') then $ ; message, "yderxder_6th_ghost: not yet implemented for coord_system='" + coord_system + "'" ; ; Calculate fmx, fmy, and fmz, based on the input array size. ; s = size(f) if ((s[0] lt 3) or (s[0] gt 4)) then $ message, 'yderxder_6th_ghost: not implemented for '+strtrim(s[0],2)+'-D arrays' d = make_array(size=s) fmx = s[1] & fmy = s[2] & fmz = s[3] l1 = nghostx & l2 = fmx-nghostx-1 m1 = nghosty & m2 = fmy-nghosty-1 n1 = nghostz & n2 = fmz-nghostz-1 ; ; Check for degenerate case (no xy-derivative) ; if (ldegenerated[0] or ldegenerated[1] or (fmx eq 1) or (fmy eq 1)) then return, d ; ; Calculate d^2 / dy dx (f) ; fac = one/60.^2 if (lequidist[0]) then begin fac *= dx_1[l1] end else begin if (fmx ne mx) then $ message, "yderxder_6th_ghost: not implemented for x-subvolumes on a non-equidistant grid in x." end if (lequidist[1]) then begin fac *= dy_1[m1] end else begin if (fmy ne my) then $ message, "yderxder_6th_ghost: not implemented for y-subvolumes on a non-equidistant grid in y." end ; ; Differentiation scheme: ; d[l,m,n] = fac*( 45*(xder (f[l,m+1,n]) - xder (f[l,m-1,n])) ; - 9*(xder (f[l,m+2,n]) - xder (f[l,m-2,n])) ; + (xder (f[l,m+3,n]) - xder (f[l,m-3,n])) ) ; d[l1:l2,m1:m2,n1:n2,*] = $ (45.*fac)*( ( 45.*(f[l1+1:l2+1,m1+1:m2+1,n1:n2,*]-f[l1-1:l2-1,m1+1:m2+1,n1:n2,*]) $ - 9.*(f[l1+2:l2+2,m1+1:m2+1,n1:n2,*]-f[l1-2:l2-2,m1+1:m2+1,n1:n2,*]) $ + (f[l1+3:l2+3,m1+1:m2+1,n1:n2,*]-f[l1-3:l2-3,m1+1:m2+1,n1:n2,*])) $ -( 45.*(f[l1+1:l2+1,m1-1:m2-1,n1:n2,*]-f[l1-1:l2-1,m1-1:m2-1,n1:n2,*]) $ - 9.*(f[l1+2:l2+2,m1-1:m2-1,n1:n2,*]-f[l1-2:l2-2,m1-1:m2-1,n1:n2,*]) $ + (f[l1+3:l2+3,m1-1:m2-1,n1:n2,*]-f[l1-3:l2-3,m1-1:m2-1,n1:n2,*]))) $ - (9.*fac)*( ( 45.*(f[l1+1:l2+1,m1+2:m2+2,n1:n2,*]-f[l1-1:l2-1,m1+2:m2+2,n1:n2,*]) $ - 9.*(f[l1+2:l2+2,m1+2:m2+2,n1:n2,*]-f[l1-2:l2-2,m1+2:m2+2,n1:n2,*]) $ + (f[l1+3:l2+3,m1+2:m2+2,n1:n2,*]-f[l1-3:l2-3,m1+2:m2+2,n1:n2,*])) $ -( 45.*(f[l1+1:l2+1,m1-2:m2-2,n1:n2,*]-f[l1-1:l2-1,m1-2:m2-2,n1:n2,*]) $ - 9.*(f[l1+2:l2+2,m1-2:m2-2,n1:n2,*]-f[l1-2:l2-2,m1-2:m2-2,n1:n2,*]) $ + (f[l1+3:l2+3,m1-2:m2-2,n1:n2,*]-f[l1-3:l2-3,m1-2:m2-2,n1:n2,*]))) $ + (fac)*( ( 45.*(f[l1+1:l2+1,m1+3:m2+3,n1:n2,*]-f[l1-1:l2-1,m1+3:m2+3,n1:n2,*]) $ - 9.*(f[l1+2:l2+2,m1+3:m2+3,n1:n2,*]-f[l1-2:l2-2,m1+3:m2+3,n1:n2,*]) $ + (f[l1+3:l2+3,m1+3:m2+3,n1:n2,*]-f[l1-3:l2-3,m1+3:m2+3,n1:n2,*])) $ -( 45.*(f[l1+1:l2+1,m1-3:m2-3,n1:n2,*]-f[l1-1:l2-1,m1-3:m2-3,n1:n2,*]) $ - 9.*(f[l1+2:l2+2,m1-3:m2-3,n1:n2,*]-f[l1-2:l2-2,m1-3:m2-3,n1:n2,*]) $ + (f[l1+3:l2+3,m1-3:m2-3,n1:n2,*]-f[l1-3:l2-3,m1-3:m2-3,n1:n2,*]))) ; if (not lequidist[0]) then for l = l1, l2 do d[l,*,*,*] *= dx_1[l] if (not lequidist[1]) then for m = m1, m2 do d[*,m,*,*] *= dy_1[m] ; if (any (coord_system eq ['cylindric','spherical'])) then $ for l = l1, l2 do d[l,*,*,*] /= x[l] ; ; Set ghost zones. ; if (ghost) then d=pc_setghost(d,bcx=bcx,bcy=bcy,bcz=bcz,param=param,t=t) ; return, d ; end