
“Hello, disk!” with the PENCIL CODE

Wlad Lyra
Uppsala University

1 Introduction
This file is intended to be a guide on how to setup a simulation using the PEN-
CIL CODE. It will tour through the configuration files, then through the start
and finally run parameters. We choose a simple 2D problem that is concep-
tually simple and can at the same time, highlight some of the nuances of the
code better than a 1D problem. The problem we choose is to set up a differ-
entially rotating accretion disk around a central star of mass M. We make the
approximations of isothermality, laminarity (as opposed to turbulence), and
axis-symmetry, as well as ignoring the disk’s self-gravity. Shock terms are also
ignored.

The equations to solve are the continuity and Navier-Stokes equations in an
inertial frame

Dρ

Dt = −ρ∇ · u, (1)

Du
Dt = −

1
ρ
∇p −

GM
r3 r + ν∇2u (2)

where ρ and u are the density and velocity of the gas, p is the pressure, G is the
gravitational constant and ν is the kinematic viscosity. The operator D/Dt =
∂/∂t + u · ∇ represents the advective derivative.

We write cylindrical coordinates as (s,φ,z) and spherical coordinates as (r,φ,θ),
where θ is the polar angle and φ the azimuthal angle. The z direction is per-
pendicular to the midplane of the disk.

The Navier-Stokes equation are in fact three equations, one for each compo-
nent of the velocity field. In cylindrical coordinates and under the conditions
of azimuthal symmetry (∂/∂φ=0) and initial centrifugal balance ur(t0)=0, they
read

s̈ − sφ̇2 = −
1
ρ

∂p
∂s −

GM
r3 s (3)

sφ̈ = ν

(

∂2sφ̇

∂s2 +
1
s

∂sφ̇

∂s −
φ̇

s

)

(4)

z̈ = −
1
ρ

∂p
∂z −

GM
r3 z (5)

The first equation gives the condition for initial centrifugal balance (s̈=0)

1

Ω
2 = Ω

2
K +

1
sρ

∂p
∂s (6)

where we substituted ΩK = GM/r3 for the Keplerian angular frequency and
Ω = φ̇ for the true (pressure-corrected) angular frequency.

The second one explicits that viscosity is continuously depriving the disk
of angular momentum and making it accrete into the central star. Although, as
ν is small, this effect takes many orbits to settle into a steady inflow.

The third equation gives the condition for hydrostatic equilibrium (z̈=0)

1
ρ

∂p
∂z = −ΩKz (7)

This last equation will be ignored in this problem, but we state it for the
sake of completeness.

Our job is to code this initial condition.

2 Initial Conditions
As the equations show, we have a density and a velocity equation to solve, in-
volving gravity, viscosity and pressure. We therefore need the files density.f90,
hydro.f90, gravity r.f90, viscosity.f90 along, of course, with a suitable equation
of state. Your src/Makefile.local should therefore look

-*-Makefile-*-

Makefile for modular pencil code -- local part

Included by ‘Makefile’

###

MPICOMM = nompicomm

HYDRO = hydro

DENSITY = density

GRAVITY = gravity r

The ideal gas equation of state and viscosity modules are switched on by
default. Your start.infile should contain, in this order, init pars, eos init pars,
hydro init pars and grav init pars.

By inspecting start.f90, you see that these variables are initialized by first
calling gravity, then velocity, then density. This occurs because hydro needs
to know the gravity field to initialize the centrifugal equilibrium. The pres-
sure gradient is also needed to ensure centrifugal balance, but this term can be
added to the velocity field a posteriori, in the density module itself.

So, let’s start from the beginning, setting the gravity field.

2.1 Gravity
We are interested in the gravitational field of a point mass M centered at r=0,
generating a Newtonian acceleration of

g = −
GM
r2 r̂. (8)

2

The only parameter one needs is the product GM, which in the code is ex-
pressed by the constant g0.

This acceleration, however, can lead to numerical problems, since it has
a singularity in the origin. A modified version usually used in numerical
schemes is the acceleration generated by a potential Φ = −GM(rn + rn

0)−1/n

g = −∇Φ = −GMrn−1(rn + rn
0)−

n+1
n r̂. (9)

This gravity in the code is called smoothed-newton. The unsmoothed New-
tonian is called no-smooth. While no-smooth just needs g0, smoothed-newton
also needs the exponent n and the peak radius r0. In the code, these constants
are n pot and r0 pot.

We will use the no-smoothgravity, with g0=GM=1. So, your grav init pars

should look

&grav init pars

ipotential=‘no-smooth’

g0=1.

/

So, what does this option do? As it can be seen in the code, initialize gravity

first register the variable gg as a global variable.

call farray register global(‘gg’,iglobal gg,vector=3)

The gravity field to be calculated will be stored in this global variable in
start time and will not be calculated again in run-time. In order words, the
gravity field set by gravity r is always static.

Next, the user has the option to choose if the distance to use in setting the
gravity field will be spherical (r) or cylindrical (s). Physical gravity is always
spherical, but the cylindrical “limit” is useful for studying some processes
where the vertical direction has limited meaning. In our 2D case, they have the
same value. The cylindrical version of gravity can be activated by switching
on lcylindrical gravity=T in grav init pars. As it can be seen, the gravity
field is calculated in the subroutine get gravity field. This routine will set
the vertical gravity to zero if lcylindrical gravity is switched on.

2.2 Velocity
Now we have to initialize the velocity field. Here we have to ensure that the
velocity field will centrifugally balance the radial gravity. From the radial mo-
mentum equation (Eq. 6)

sΩ
2 =

GM
r3 s +

∇p
ρ

(10)

and uφ = sΩ. In the hydro module we will just initialize the gravitational
term. The pressure gradient term will be corrected later, in the density module.
Choose the option centrifugal-balance for inituu. The subroutine centrifu-
gal balance will take the gravitational acceleration from the gravity module

3

and calculate Ω (called OO in the code). Then the velocity is set for different co-
ordinate systems. For cylindrical coordinates, ur=0 and uφ=sΩ. For Cartesian
ux=−yΩ and uy=xΩ.

In the subroutine centrifugal balance you will see

call acceleration(g r)

OO=sqrt(-g r/rr cyl)

f(:,m,n,iux) = f(:,m,n,iux) - y(m)*OO

f(:,m,n,iuy) = f(:,m,n,iuy) + x*OO

f(:,m,n,iuz) = f(:,m,n,iuz) + 0.

As you can see, this routine is a general routine to code centrifugal balance
for any gravitational potential. The case ipotential=’smoothed-newton’ is
dealt with as well. But in this case, other parts of the code must also be aware
of the values of n pot and r0 pot. Through the code, the variable rsmooth is
used instead of r0 pot (which is internal to the gravity module) and n pot=2 is
assumed. If you choose to use smoothed Newtonian gravity in a global disk,
the centrifugal balance subroutine stops the code if rsmooth is different than
r0 pot and if n pot is not equal to 2.

So, the only thing needed here for the start.in file is

&hydro init pars

inituu=‘centrifugal-balance’

/

Now we turn to the pressure term. It depends, of course, in the chosen
equation of state of the gas.

2.3 Equation of State
The equation of state for accretion disks is not a subject of much attention in
the literature. Usually, one assumes an ideal gas equation of state

p = ρc2
s (11)

with a radially dependent sound speed that does not evolve in time. That is
the locally isothermal approximation. Physically it means that the disk not only is
in radiative equilibrium, but can also efficiently radiate any excess energy so
that no heating ever occurs.

Such approximation is carried out by using the switch llocal iso=T in the
init pars field of the start.in file. The sound speed you want is

c2
s = c2

s0s−qT (12)

The constants you need are then cs0 and qT. These are called cs0 and ptlaw

in the code, and are start parameters of the Equation of State module.
We need to know the unit of velocity [u] to set the sound speed. As we

set GM=1, its dimension of length3 time−2, sets a constraint on the product of
these two units. By choosing a unit of length [x]=s0, the unit of time follows
from this as being the inverse of the angular frequency at s0

4

[t] =

√

GM
s3

0
= Ω

−1
0 , (13)

which gives an orbital period P = 2π at s0.
The unit of velocity

[u] = [x]/[t] = Ω0s0 (14)
is therefore the local Keplerian speed at s0. The quantity s0 is set at init pars

as r ref. We set it to 1. Ω0 and the unit of velocity are therefore also 1. We
will assume that, at this position, the Mach number is 20. The constant cs0 is
therefore 0.05. We will also choose qT=1, so that the sound speed falls with the
square root of the (cylindrincal) distance. Your eos init pars should then look

&eos init pars

cs0=0.05

ptlaw=1.

gamma=1.

/

The pressure gradient that this equation of state yield is

fp = −ρ−1
∇p (15)

= −ρ−1
(

ρ∇c2
s + c2

s∇ρ
)

(16)

= −c2
s
(

∇ln c2
s + ∇ln ρ

)

(17)

= −c2
s (∇ln T + ∇ln ρ)

where T is the temperature. The logarithm of the squared sound speed and the
logarithm of the temperature are the same quantity.

As the sound speed profile, the sound speed and the gradient of the loga-
rithmic temperature can be set as global variables. The idealgas file of the Equa-
tion of State module sets the global arrays for these 4 quantities (temperature
gradient is a vector). They will be initialized when the Density module calls
the local isothermal subroutine. Choose initlnrho=’local-isothermal’

in density init pars. You see in the subroutine local isothermal density

that the first thing that it does is to get the ptlaw variable from the equation of
state module and set the thermodynamical quantities with it.

The subroutine set thermodynamical quantities is only used for the lo-
cally isothermal approximation. It will stop the code if entropy or temperature
is used, or if γ is not 1. It will then set the sound speed as a power law

call power law(cs20,rr cyl,ptlaw,cs2)

f(:,m,n,iglobal cs2)= cs2

as well as the associated temperature gradient

gslnTT=-ptlaw/(rr cyl**2+rsmooth**2)*rr cyl

f(:,m,n,iglobal glnTT)=gslnTT*x /rr cyl

f(:,m,n,iglobal glnTT+1)=gslnTT*y(m)/rr cyl

f(:,m,n,iglobal glnTT+2)=0.

5

Next, the subroutine corrects for the azimuthal velocity by the temperature
gradient term in the pressure force.

corr=gslnTT*cs2

tmp1=(f(:,m,n,iux)**2+f(:,m,n,iuy)**2)/rr cyl**2

tmp2=tmp1 + corr/rr cyl

f(:,m,n,iux)=-sqrt(tmp2)*y(m)

f(:,m,n,iuy)= sqrt(tmp2)*x

So now the only thing left is to set the density field.

2.4 Density
After setting the thermodynamical quantities, the code sets the density field.
We want a power-law density profile, typical of accretion disks with constant
mass accretion rate

ρ = ρ0s−q (18)
In the PENCIL CODE, all initial conditions for density are coded as logarith-

mic densities. If the switch ldensity nolog is switched on, the exponential of
the coded initial condition is taken in the end of init lnrho. So, we have to
code

ln ρ = ln ρ0 − q ln s (19)
The quantity ρ0 is 1 by default. The exponent q is called plaw and is zero

by default (constant density). We will use these defaults and work with linear
density.

Your density pars init should then be

&density init pars

initlnrho=‘local-isothermal’

ldensity nolog=T

/

The subroutine local isothermal density will then set the density as a
power law

lnrhomid=log(rho0)-.5*plaw*log(rr cyl**2+rsmooth**2)

f(:,m,n,ilnrho) = lnrhomid

rsmooth is the same parameter that avoids singularities in the gravity and
velocity fields in the center of the grid. In our case it is set to zero, so Eq. 18 is
recovered. The next line of the subroutine calls another subroutine to correct
for the density gradient term in the pressure gradient. This is very similar to
what was done to correct the temperature gradient. It calculates the density
gradient,

call grad(f,ilnrho,glnrho)

multiplies it by the squared sound speed

6

gslnrho=(glnrho(:,1)*x(l1:l2) + glnrho(:,2)*y(m))/rr cyl

corr=gslnrho*f(l1:l2,m,n,iglobal cs2)

and applies this correction to the angular velocity according to Eq. 6

tmp1=(f(l1:l2,m,n,iux)**2+f(l1:l2,m,n,iuy)**2)/rr cyl**2

tmp2=tmp1 + corr/rr cyl

!

f(l1:l2,m,n,iux)=-sqrt(tmp2)*y(m)

f(l1:l2,m,n,iuy)= sqrt(tmp2)*x(l1:l2)

Okay, all the equations are set. Let’s take a look at the boundary conditions.

3 Boundary Conditions
To start the code, we just have to set the box, choose the appropriate boundary
conditions and set the resolution in cparam.local.

As we are solving in a Cartesian grid, what we will do is to embed a cylin-
der inside the box and only solve the equations inside it. Everything outside of
it will be frozen (the time-derivatives will be set to zero). We can set the outer
boundary of this cylinder at sext =2.5. If we also set the end of the Cartesian
box at 2.5, the ghost cells will lead to instabilities in the boundary. So let’s give
some room to avoid it and set the edge of the Cartesian box at 2.6

xyz0 = -2.6,-2.6,-1., ! first corner of box

xyz1 = 2.6, 2.6, 1., ! second corner of box

The “real” boundaries of the box then do not matter. We can set them all to
periodic.

lperi = T , T , T

Now, the disk will also need an inner boundary. Why? Because we are us-
ing non-smoothed Newtonian gravity, that contains a singularity at the origin,
that’s why. Let’s avoid it by placing the inner boundary at, say, sint =0.4

lcylinder in a box=T

r int=0.4, ! radius of interior cylindrical boundary

r ext=2.5, ! radius of exterior cylindrical boundary

We are then done with start.in It should look

! -*-f90-*-(for Emacs)

!

! Initialisation parameters

!

&init pars

ip=14 ! debugging parameter

xyz0 = -2.6,-2.6,-1,! first corner of box

xyz1 = 2.6, 2.6, 1,! second corner of box

lperi = T , T , T, ! periodic direction?

7

r int=0.4, ! radius of interior cylindrical boundary

r ext=2.5, ! radius of exterior cylindrical boundary

lcylinder in a box=T

lwrite ic=T

llocal iso=T

r ref=1.0

/

&eos init pars

cs0=0.05

ptlaw=1., gamma=1.

/

&hydro init pars

inituu=‘centrifugal-balance’

/

&density init pars

initlnrho=‘local-isothermal’

ldensity nolog=T

/

&grav init pars

ipotential=‘no-smooth’

g0=1.

/

Next we choose the resolution. At least 320 points in x and y will be needed
to damp numerical instabilities in the inner edge of the disk. The line

! MGLOBAL CONTRIBUTION 4

is needed because of the extra 4 thermodynamical variables the local isother-
mal equation of state requires (sound speed + 3 components of the temperature
gradient)

! -*-f90-*- (for emacs) vim:set filetype=fortran: (for vim)

! cparam.local

!

! Local settings concerning grid size and number of CPUs.

! This file is included by cparam.f90

!

! MGLOBAL CONTRIBUTION 4

!

integer, parameter :: ncpus=1,nprocy=1,nprocz=ncpus/nprocy,nprocx=1

integer, parameter :: nxgrid=320,nygrid=320,nzgrid=1

Done. Now just run make and start.csh

4 Running
The run parameters are much simpler. The main thing involves the freezing
boundaries used. After evolving the dynamical equations, we set the time
derivatives of all variables to zero in the region outside sint and sint . To avoid
numerical instabilities due to this abrupt jump from frozen to evolving regions,
we have to apply a buffer zone to the derivatives of the variables. This is done

8

by setting a width within which the motion will be damped until it reaches the
frozen boundary.

Set this width to 0.05 in the inner and 0.1 in the outer boundary. The pa-
rameters fshift int and fshift ext are flags that specify if the width occurs
before (-1) or after (1) the boundary. It must of course be external in the inner
boundary and internal in the outer one. So fshift int=1 and fshift ext=-1

!

wfreeze int = 0.05

wfreeze ext = 0.1

fshift int=1

fshift ext=-1

!

The effect of this can be seen in equ.f90. After the equations are solved and
df is fully calculated, the following terms apply the damping and freezing for
the inner boundary:

pfreeze int = quintic step(p%rcyl mn,rfreeze int,wfreeze int,SHIFT=fshift int)

if (lfreeze varint(iv)) df(l1:l2,m,n,iv) = pfreeze int*df(l1:l2,m,n,iv)

The external freezing is similar,

pfreeze ext = 1-quintic step(p%rcyl mn,rfreeze ext,wfreeze ext,SHIFT=fshift ext)

if (lfreeze varext(iv)) df(l1:l2,m,n,iv) = pfreeze ext*df(l1:l2,m,n,iv)

And what quintic step does is

!!!

function quintic step mn(x,x0,width,shift)

!

! Smooth unit step function with quintic (smooth) transition over [x0-w,x0+w].

!

! Version for 1d arg (in particular pencils).

!

! 09-aug-05/wolf: coded

!

use Cdata, only: tini

!

real, dimension(:) :: x

real, dimension(size(x,1)) :: quintic step mn,xi

real :: x0,width

real, optional :: shift

real :: relshift=0.

!

if (present(shift)) then; relshift=shift; else; relshift=0.; endif

xi = (x-x0)/(width+tini) - relshift

xi = max(xi,-1.)

xi = min(xi, 1.)

quintic step mn = 0.5 + xi*(0.9375 + xi**2*(-0.625 + xi**2*0.1875))

9

0.0 0.5 1.0 1.5 2.0 2.5
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Frozen Boundaries

0.0 0.5 1.0 1.5 2.0 2.5
s

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S(
s)

Figure 1: Damping and freezing profile to be applied to the derivatives of the
variables.

Combined, these two functions result in the freezing profile shown in Fig. 4.
That function multiplies the derivatives of the variables. We simply have to
specify that we want both internal and external freezing for density and veloci-
ties by setting lfreeze uint=T,lfreeze uext=T and lfreeze lnrhoint=T lfreeze lnrhoext=T

Now, the last thing needed is dissipation. For density, we can use upwind-
ing (lupw rho=T)

For velocity, a simple viscosity with constant ν as in Eq. 2 will work well.
For the choice of sound speed and length, 10−5 should do. The run.in file
should then be

! -*-f90-*- (for Emacs)

! Run parameters!

!

&run pars

ip=14,

nt=50, it1=5, isave=100, itorder=3, ialive=1

cdt=0.4,

cdtv=0.4,

dtmin=1e-6,

dsnap=6.2831 !VARN for every complete orbit at s0

dvid=1. !video slices more often

!

wfreeze int = 0.05

wfreeze ext = 0.1

fshift int=1

fshift ext=-1

!

/

&eos run pars

10

/

&hydro run pars

lfreeze uint=T,lfreeze uext=T

/

&density run pars

lupw rho=T

lfreeze lnrhoint=T

lfreeze lnrhoext=T

/

&grav run pars

/

&viscosity run pars

ivisc=’nu-const’

nu=1e-5

/

Now run and relax!

11

