! $Id$ ! !** AUTOMATIC CPARAM.INC GENERATION **************************** ! Declare (for generation of cparam.inc) the number of f array ! variables and auxiliary variables added by this module ! ! CPARAM integer, parameter :: nghost = 4 ! !*************************************************************** module Deriv ! use Messages use Cdata ! implicit none ! private ! public :: initialize_deriv, finalize_deriv public :: der, der2, der3, der4, der5, der6, derij, der5i1j public :: der6_other, der_pencil, der2_pencil public :: deri_3d_inds public :: der_upwind1st, der_z, der2_z public :: der_onesided_4_slice public :: der_onesided_4_slice_other public :: der2_minmod public :: heatflux_deriv_x ! real :: der2_coef0, der2_coef1, der2_coef2, der2_coef3, der2_coef4 ! !debug integer, parameter :: icount_der = 1 !DERCOUNT !debug integer, parameter :: icount_der2 = 2 !DERCOUNT !debug integer, parameter :: icount_der4 = 3 !DERCOUNT !debug integer, parameter :: icount_der5 = 4 !DERCOUNT !debug integer, parameter :: icount_der6 = 5 !DERCOUNT !debug integer, parameter :: icount_derij = 6 !DERCOUNT !debug integer, parameter :: icount_der_upwind1st = 7 !DERCOUNT !debug integer, parameter :: icount_der_other = 8 !DERCOUNT ! interface der ! Overload the der function module procedure der_main ! derivative of an 'mvar' variable module procedure der_other ! derivative of another field endinterface ! interface der2 ! Overload the der function module procedure der2_main ! derivative of an 'mvar' variable module procedure der2_other ! derivative of another field endinterface ! interface derij ! Overload the der function module procedure derij_main ! derivative of an 'mvar' variable module procedure derij_other ! derivative of another field endinterface ! interface der_onesided_4_slice ! Overload the der function module procedure der_onesided_4_slice_main ! derivative of an 'mvar' variable module procedure der_onesided_4_slice_other ! derivative of another field endinterface ! contains ! !*********************************************************************** subroutine initialize_deriv() ! ! Initialize stencil coefficients ! select case (der2_type) ! case ('standard') der2_coef0=-14350./5040.; der2_coef1=8064./5040. der2_coef2=-1008./5040.; der2_coef3=128./5040.; der2_coef4=-9./5040. ! case ('tuned1') der2_coef0=-0.75; der2_coef1=0.34375 der2_coef2=0.125; der2_coef3=-0.09375 ! case default write(unit=errormsg,fmt=*) & "der2_type doesn't exist" call fatal_error('initialize_deriv',errormsg) ! endselect ! endsubroutine initialize_deriv !*********************************************************************** subroutine der_main(f,k,df,j,ignoredx) ! ! calculate derivative df_k/dx_j ! accurate to 8th order, explicit, periodic ! ! 1-oct-97/axel: coded ! 18-jul-98/axel: corrected mx -> my and mx -> mz in all y and z ders ! 1-apr-01/axel+wolf: pencil formulation ! 25-jun-04/tobi+wolf: adapted for non-equidistant grids ! 21-feb-07/axel: added 1/r and 1/pomega factors for non-coord basis ! 25-aug-09/axel: adapted from deriv ! use Cdata ! real, dimension (mx,my,mz,mfarray) :: f real, dimension (nx) :: df,fac logical, intent(in), optional :: ignoredx integer :: j,k ! intent(in) :: f,k,j intent(out) :: df ! !debug if (loptimise_ders) der_call_count(k,icount_der,j,1) = & !DERCOUNT !debug der_call_count(k,icount_der,j,1)+1 !DERCOUNT ! if (present(ignoredx)) call fatal_error('der_main', 'optional argument ignoredx is not implemented. ') ! if (j==1) then if (nxgrid/=1) then fac=(1./840.)*dx_1(l1:l2) df=fac*(+672.*(f(l1+1:l2+1,m,n,k)-f(l1-1:l2-1,m,n,k)) & -168.*(f(l1+2:l2+2,m,n,k)-f(l1-2:l2-2,m,n,k)) & + 32.*(f(l1+3:l2+3,m,n,k)-f(l1-3:l2-3,m,n,k)) & - 3.*(f(l1+4:l2+4,m,n,k)-f(l1-4:l2-4,m,n,k))) else df=0. if (ip<=5) print*, 'der_main: Degenerate case in x-direction' endif elseif (j==2) then if (nygrid/=1) then fac=(1./840.)*dy_1(m) df=fac*(+672.*(f(l1:l2,m+1,n,k)-f(l1:l2,m-1,n,k)) & -168.*(f(l1:l2,m+2,n,k)-f(l1:l2,m-2,n,k)) & + 32.*(f(l1:l2,m+3,n,k)-f(l1:l2,m-3,n,k)) & - 3.*(f(l1:l2,m+4,n,k)-f(l1:l2,m-4,n,k))) if (lspherical_coords) df=df*r1_mn if (lcylindrical_coords) df=df*rcyl_mn1 else df=0. if (ip<=5) print*, 'der_main: Degenerate case in y-direction' endif elseif (j==3) then if (nzgrid/=1) then fac=(1./840.)*dz_1(n) df=fac*(+672.*(f(l1:l2,m,n+1,k)-f(l1:l2,m,n-1,k)) & -168.*(f(l1:l2,m,n+2,k)-f(l1:l2,m,n-2,k)) & + 32.*(f(l1:l2,m,n+3,k)-f(l1:l2,m,n-3,k)) & - 3.*(f(l1:l2,m,n+4,k)-f(l1:l2,m,n-4,k))) if (lspherical_coords) df=df*r1_mn*sin1th(m) else df=0. if (ip<=5) print*, 'der_main: Degenerate case in z-direction' endif endif ! endsubroutine der_main !*********************************************************************** subroutine der_other(f,df,j) ! ! Along one pencil in NON f variable ! calculate derivative of a scalar, get scalar ! accurate to 8th order, explicit, periodic ! ! 26-nov-02/tony: coded, duplicate der_main but without k subscript, overload ! 25-jun-04/tobi+wolf: adapted for non-equidistant grids ! 21-feb-07/axel: added 1/r and 1/pomega factors for non-coord basis ! 25-aug-09/axel: adapted from deriv ! use Cdata ! real, dimension (mx,my,mz) :: f real, dimension (nx) :: df,fac integer :: j ! intent(in) :: f,j intent(out) :: df ! !debug if (loptimise_ders) der_call_count(1,icount_der_other,j,1) = & !debug der_call_count(1,icount_der_other,j,1) + 1 ! if (j==1) then if (nxgrid/=1) then fac=(1./840.)*dx_1(l1:l2) df=fac*(+672.*(f(l1+1:l2+1,m,n)-f(l1-1:l2-1,m,n)) & -168.*(f(l1+2:l2+2,m,n)-f(l1-2:l2-2,m,n)) & + 32.*(f(l1+3:l2+3,m,n)-f(l1-3:l2-3,m,n)) & - 3.*(f(l1+4:l2+4,m,n)-f(l1-4:l2-4,m,n))) else df=0. if (ip<=5) print*, 'der_other: Degenerate case in x-direction' endif elseif (j==2) then if (nygrid/=1) then fac=(1./840.)*dy_1(m) df=fac*(+672.*(f(l1:l2,m+1,n)-f(l1:l2,m-1,n)) & -168.*(f(l1:l2,m+2,n)-f(l1:l2,m-2,n)) & + 32.*(f(l1:l2,m+3,n)-f(l1:l2,m-3,n)) & - 3.*(f(l1:l2,m+4,n)-f(l1:l2,m-4,n))) if (lspherical_coords) df=df*r1_mn if (lcylindrical_coords) df=df*rcyl_mn1 else df=0. if (ip<=5) print*, 'der_other: Degenerate case in y-direction' endif elseif (j==3) then if (nzgrid/=1) then fac=(1./840.)*dz_1(n) df=fac*(+672.*(f(l1:l2,m,n+1)-f(l1:l2,m,n-1)) & -168.*(f(l1:l2,m,n+2)-f(l1:l2,m,n-2)) & + 32.*(f(l1:l2,m,n+3)-f(l1:l2,m,n-3)) & - 3.*(f(l1:l2,m,n+4)-f(l1:l2,m,n-4))) if (lspherical_coords) df=df*r1_mn*sin1th(m) else df=0. if (ip<=5) print*, 'der_other: Degenerate case in z-direction' endif endif ! endsubroutine der_other !*********************************************************************** subroutine der_pencil(j,pencil,df) ! ! Calculate first derivative of any x, y or z pencil. ! ! 01-nov-07/anders: adapted from der ! 25-aug-09/axel: adapted from deriv ! use Cdata ! real, dimension (:) :: pencil,df integer :: j ! intent(in) :: j, pencil intent(out) :: df ! ! x-derivative ! if (j==1) then if (size(pencil)/=mx) then if (lroot) print*, 'der_pencil: pencil must be of size mx for x derivative' call fatal_error('der_pencil','') endif df(l1:l2)=(1./840)*dx_1(l1:l2)*( & + 672.0*(pencil(l1+1:l2+1)-pencil(l1-1:l2-1)) & - 168.0*(pencil(l1+2:l2+2)-pencil(l1-2:l2-2)) & + (pencil(l1+3:l2+3)-pencil(l1-3:l2-3))) else if (j==2) then ! ! y-derivative ! if (size(pencil)/=my) then if (lroot) print*, 'der_pencil: pencil must be of size my for y derivative' call fatal_error('der_pencil','') endif df(m1:m2)=(1./840)*dy_1(m1:m2)*( & + 672.0*(pencil(m1+1:m2+1)-pencil(m1-1:m2-1)) & - 168.0*(pencil(m1+2:m2+2)-pencil(m1-2:m2-2)) & + (pencil(m1+3:m2+3)-pencil(m1-3:m2-3))) else if (j==3) then ! ! z-derivative ! if (size(pencil)/=mz) then if (lroot) print*, 'der_pencil: pencil must be of size mz for z derivative' call fatal_error('der_pencil','') endif df(n1:n2)=(1./840)*dz_1(n1:n2)*( & + 672.0*(pencil(n1+1:n2+1)-pencil(n1-1:n2-1)) & - 168.0*(pencil(n1+2:n2+2)-pencil(n1-2:n2-2)) & + (pencil(n1+3:n2+3)-pencil(n1-3:n2-3))) else if (lroot) print*, 'der_pencil: no such direction j=', j call fatal_error('der_pencil','') endif ! if (lcylindrical_coords.or.lspherical_coords) & call fatal_error("der_pencil","Not implemented for non-cartesian") ! endsubroutine der_pencil !*********************************************************************** subroutine der2_main(f,k,df2,j) ! ! calculate 2nd derivative d^2f_k/dx_j^2 ! accurate to 8th order, explicit, periodic ! ! 1-oct-97/axel: coded ! 1-apr-01/axel+wolf: pencil formulation ! 25-jun-04/tobi+wolf: adapted for non-equidistant grids ! 25-aug-09/axel: adapted from deriv ! use Cdata ! real, dimension (mx,my,mz,mfarray) :: f real, dimension (nx) :: df2,fac,df integer :: j,k ! intent(in) :: f,k,j intent(out) :: df2 ! !debug if (loptimise_ders) der_call_count(k,icount_der2,j,1) = & !DERCOUNT !debug der_call_count(k,icount_der2,j,1) + 1 !DERCOUNT ! if (j==1) then if (nxgrid/=1) then fac=dx_1(l1:l2)**2 df2=fac*(der2_coef0* f(l1 :l2 ,m,n,k) & +der2_coef1*(f(l1+1:l2+1,m,n,k)+f(l1-1:l2-1,m,n,k)) & +der2_coef2*(f(l1+2:l2+2,m,n,k)+f(l1-2:l2-2,m,n,k)) & +der2_coef3*(f(l1+3:l2+3,m,n,k)+f(l1-3:l2-3,m,n,k)) & +der2_coef4*(f(l1+4:l2+4,m,n,k)+f(l1-4:l2-4,m,n,k))) if (.not.lequidist(j)) then call der(f,k,df,j) df2=df2+dx_tilde(l1:l2)*df endif else df2=0. endif elseif (j==2) then if (nygrid/=1) then fac=dy_1(m)**2 df2=fac*(der2_coef0*f(l1:l2,m ,n,k) & +der2_coef1*(f(l1:l2,m+1,n,k)+f(l1:l2,m-1,n,k)) & +der2_coef2*(f(l1:l2,m+2,n,k)+f(l1:l2,m-2,n,k)) & +der2_coef3*(f(l1:l2,m+3,n,k)+f(l1:l2,m-3,n,k)) & +der2_coef4*(f(l1:l2,m+4,n,k)+f(l1:l2,m-4,n,k))) if (lspherical_coords) df2=df2*r2_mn if (lcylindrical_coords) df2=df2*rcyl_mn2 if (.not.lequidist(j)) then call der(f,k,df,j) df2=df2+dy_tilde(m)*df endif else df2=0. endif elseif (j==3) then if (nzgrid/=1) then fac=dz_1(n)**2 df2=fac*(der2_coef0*f(l1:l2,m,n ,k) & +der2_coef1*(f(l1:l2,m,n+1,k)+f(l1:l2,m,n-1,k)) & +der2_coef2*(f(l1:l2,m,n+2,k)+f(l1:l2,m,n-2,k)) & +der2_coef3*(f(l1:l2,m,n+3,k)+f(l1:l2,m,n-3,k)) & +der2_coef4*(f(l1:l2,m,n+4,k)+f(l1:l2,m,n-4,k))) if (lspherical_coords) df2=df2*r2_mn*sin2th(m) if (.not.lequidist(j)) then call der(f,k,df,j) df2=df2+dz_tilde(n)*df endif else df2=0. endif endif ! ! endsubroutine der2_main !*********************************************************************** subroutine der2_other(f,df2,j) ! ! calculate 2nd derivative d^2f/dx_j^2 (of scalar f) ! accurate to 8th order, explicit, periodic ! ! 1-oct-97/axel: coded ! 1-apr-01/axel+wolf: pencil formulation ! 25-jun-04/tobi+wolf: adapted for non-equidistant grids ! 25-aug-09/axel: adapted from deriv ! use Cdata ! real, dimension (mx,my,mz) :: f real, dimension (nx) :: df2,fac,df integer :: j ! intent(in) :: f,j intent(out) :: df2 ! !debug if (loptimise_ders) der_call_count(k,icount_der2,j,1) = & !DERCOUNT !debug der_call_count(k,icount_der2,j,1) + 1 !DERCOUNT ! ! if (j==1) then if (nxgrid/=1) then fac=(1./180)*dx_1(l1:l2)**2 df2=fac*(-490.0*f(l1:l2,m,n) & +270.0*(f(l1+1:l2+1,m,n)+f(l1-1:l2-1,m,n)) & - 27.0*(f(l1+2:l2+2,m,n)+f(l1-2:l2-2,m,n)) & + 2.0*(f(l1+3:l2+3,m,n)+f(l1-3:l2-3,m,n))) if (.not.lequidist(j)) then call der(f,df,j) df2=df2+dx_tilde(l1:l2)*df endif else df2=0. endif elseif (j==2) then if (nygrid/=1) then fac=(1./180)*dy_1(m)**2 df2=fac*(-490.0*f(l1:l2,m,n) & +270.0*(f(l1:l2,m+1,n)+f(l1:l2,m-1,n)) & - 27.0*(f(l1:l2,m+2,n)+f(l1:l2,m-2,n)) & + 2.0*(f(l1:l2,m+3,n)+f(l1:l2,m-3,n))) if (lspherical_coords) df2=df2*r2_mn if (lcylindrical_coords) df2=df2*rcyl_mn2 if (.not.lequidist(j)) then call der(f,df,j) df2=df2+dy_tilde(m)*df endif else df2=0. endif elseif (j==3) then if (nzgrid/=1) then fac=(1./180)*dz_1(n)**2 df2=fac*(-490.0*f(l1:l2,m,n) & +270.0*(f(l1:l2,m,n+1)+f(l1:l2,m,n-1)) & - 27.0*(f(l1:l2,m,n+2)+f(l1:l2,m,n-2)) & + 2.0*(f(l1:l2,m,n+3)+f(l1:l2,m,n-3))) if (lspherical_coords) df2=df2*r2_mn*sin2th(m) if (.not.lequidist(j)) then call der(f,df,j) df2=df2+dz_tilde(n)*df endif else df2=0. endif endif ! ! endsubroutine der2_other !*********************************************************************** subroutine der2_pencil(j,pencil,df2) ! ! Calculate 2nd derivative of any x, y or z pencil. ! ! 01-nov-07/anders: adapted from der2 ! 25-aug-09/axel: adapted from deriv ! use Cdata ! real, dimension (:) :: pencil,df2 integer :: j ! intent(in) :: j, pencil intent(out) :: df2 ! ! x-derivative ! if (j==1) then if (size(pencil)/=mx) then if (lroot) print*, 'der2_pencil: pencil must be of size mx for x derivative' call fatal_error('der2_pencil','') endif df2=(1./180)*dx_1(l1:l2)**2*(-490.0*pencil(l1:l2) & +270.0*(pencil(l1+1:l2+1)+pencil(l1-1:l2-1)) & - 27.0*(pencil(l1+2:l2+2)+pencil(l1-2:l2-2)) & + 2.0*(pencil(l1+3:l2+3)+pencil(l1-3:l2-3))) else if (j==2) then ! ! y-derivative ! if (size(pencil)/=my) then if (lroot) print*, 'der2_pencil: pencil must be of size my for y derivative' call fatal_error('der2_pencil','') endif df2=(1./180)*dy_1(m1:m2)**2*(-490.0*pencil(m1:m2) & +270.0*(pencil(m1+1:m2+1)+pencil(m1-1:m2-1)) & - 27.0*(pencil(m1+2:m2+2)+pencil(m1-2:m2-2)) & + 2.0*(pencil(m1+3:m2+3)+pencil(m1-3:m2-3))) else if (j==3) then ! ! z-derivative ! if (size(pencil)/=mz) then if (lroot) print*, 'der2_pencil: pencil must be of size mz for z derivative' call fatal_error('der2_pencil','') endif df2(n1:n2)=(1./180)*dz_1(n1:n2)**2*(-490.0*pencil(n1:n2) & +270.0*(pencil(n1+1:n2+1)+pencil(n1-1:n2-1)) & - 27.0*(pencil(n1+2:n2+2)+pencil(n1-2:n2-2)) & + 2.0*(pencil(n1+3:n2+3)+pencil(n1-3:n2-3))) else if (lroot) print*, 'der2_pencil: no such direction j=', j call fatal_error('der2_pencil','') endif ! endsubroutine der2_pencil !*********************************************************************** subroutine der3(f,k,df,j,ignoredx) ! ! Calculate 3rd derivative of a scalar, get scalar ! ! 10-feb-06/anders: adapted from der5 ! 25-aug-09/axel: copied from deriv, but not adapted yet ! use Cdata ! real, dimension (mx,my,mz,mfarray) :: f real, dimension (nx) :: df,fac integer :: j,k logical, optional :: ignoredx logical :: igndx ! intent(in) :: f,k,j,ignoredx intent(out) :: df ! !debug if (loptimise_ders) der_call_count(k,icount_der5,j,1) = & !DERCOUNT !debug der_call_count(k,icount_der5,j,1) + 1 !DERCOUNT ! if (present(ignoredx)) then igndx = ignoredx else igndx = .false. endif ! if (.not. lequidist(j)) & call fatal_error('der3','NOT IMPLEMENTED for non-equidistant grid') ! if (lspherical_coords) & call fatal_error('der3','NOT IMPLEMENTED for spherical coordinates') ! if (j==1) then if (nxgrid/=1) then if (igndx) then fac=(1.0/8) else fac=(1.0/8)*1./dx**3 endif df=fac*(- 13.0*(f(l1+1:l2+1,m,n,k)-f(l1-1:l2-1,m,n,k)) & + 8.0*(f(l1+2:l2+2,m,n,k)-f(l1-2:l2-2,m,n,k)) & - 1.0*(f(l1+3:l2+3,m,n,k)-f(l1-3:l2-3,m,n,k))) else df=0. endif elseif (j==2) then if (nygrid/=1) then if (igndx) then fac=(1.0/8) else fac=(1.0/8)*1./dy**3 endif df=fac*(- 13.0*(f(l1:l2,m+1,n,k)-f(l1:l2,m-1,n,k)) & + 8.0*(f(l1:l2,m+2,n,k)-f(l1:l2,m-2,n,k)) & - 1.0*(f(l1:l2,m+3,n,k)-f(l1:l2,m-3,n,k))) if (lcylindrical_coords) df=df*rcyl_mn1**3 else df=0. endif elseif (j==3) then if (nzgrid/=1) then if (igndx) then fac=(1.0/8) else fac=(1.0/8)*1./dz**3 endif df=fac*(- 13.0*(f(l1:l2,m,n+1,k)-f(l1:l2,m,n-1,k)) & + 8.0*(f(l1:l2,m,n+2,k)-f(l1:l2,m,n-2,k)) & - 1.0*(f(l1:l2,m,n+3,k)-f(l1:l2,m,n-3,k))) else df=0. endif endif ! endsubroutine der3 !*********************************************************************** subroutine der4(f,k,df,j,ignoredx,upwind) ! ! Calculate 4th derivative of a scalar, get scalar ! Used for hyperdiffusion that affects small wave numbers as little as ! possible (useful for density). ! The optional flag IGNOREDX is useful for numerical purposes, where ! you want to affect the Nyquist scale in each direction, independent of ! the ratios dx:dy:dz. ! ! 8-jul-02/wolf: coded ! 9-dec-03/nils: adapted from der6 ! 10-feb-06/anders: corrected sign and factor ! 25-aug-09/axel: copied from deriv, but not adapted yet ! use Cdata ! real, dimension (mx,my,mz,mfarray) :: f real, dimension (nx) :: df real :: fac integer :: j,k logical, optional :: ignoredx,upwind logical :: igndx,upwnd ! intent(in) :: f,k,j,ignoredx intent(out) :: df ! !debug if (loptimise_ders) der_call_count(k,icount_der4,j,1) = & !DERCOUNT !debug der_call_count(k,icount_der4,j,1) + 1 !DERCOUNT ! if (.not. lequidist(j)) then call fatal_error('der4','NOT IMPLEMENTED for no equidistant grid') endif ! if (lspherical_coords) & call fatal_error('der4','NOT IMPLEMENTED for spherical coordinates') ! if (present(ignoredx)) then igndx = ignoredx else igndx = .false. endif if (present(upwind)) then upwnd = upwind call warning('der4','upwinding not implemented') else upwnd = .false. endif ! if (j==1) then if (nxgrid/=1) then if (igndx) then fac=(1.0/6) else fac=(1.0/6)*1/dx**4 endif df=fac*(+ 56.0* f(l1:l2,m,n,k) & - 39.0*(f(l1+1:l2+1,m,n,k)+f(l1-1:l2-1,m,n,k)) & + 12.0*(f(l1+2:l2+2,m,n,k)+f(l1-2:l2-2,m,n,k)) & - (f(l1+3:l2+3,m,n,k)+f(l1-3:l2-3,m,n,k))) else df=0. endif elseif (j==2) then if (nygrid/=1) then if (igndx) then fac=(1.0/6) else fac=(1.0/6)*1/dy**4 endif df=fac*(+ 56.0* f(l1:l2,m ,n,k) & - 39.0*(f(l1:l2,m+1,n,k)+f(l1:l2,m-1,n,k)) & + 12.0*(f(l1:l2,m+2,n,k)+f(l1:l2,m-2,n,k)) & - (f(l1:l2,m+3,n,k)+f(l1:l2,m-3,n,k))) if (lcylindrical_coords) df=df*rcyl_mn1**4 else df=0. endif elseif (j==3) then if (nzgrid/=1) then if (igndx) then fac=(1.0/6) else fac=(1.0/6)*1/dz**4 endif df=fac*(+ 56.0* f(l1:l2,m,n ,k) & - 39.0*(f(l1:l2,m,n+1,k)+f(l1:l2,m,n-1,k)) & + 12.0*(f(l1:l2,m,n+2,k)+f(l1:l2,m,n-2,k)) & - (f(l1:l2,m,n+3,k)+f(l1:l2,m,n-3,k))) else df=0. endif endif ! endsubroutine der4 !*********************************************************************** subroutine der5(f,k,df,j,ignoredx) ! ! Calculate 5th derivative of a scalar, get scalar ! Used for hyperdiffusion that affects small wave numbers as little as ! possible (useful for density). ! The optional flag IGNOREDX is useful for numerical purposes, where ! you want to affect the Nyquist scale in each direction, independent of ! the ratios dx:dy:dz. ! ! 29-oct-04/anders: adapted from der6 ! 25-aug-09/axel: copied from deriv, but not adapted yet ! use Cdata ! real, dimension (mx,my,mz,mfarray) :: f real, dimension (nx) :: df,fac integer :: j,k logical, optional :: ignoredx logical :: igndx ! intent(in) :: f,k,j,ignoredx intent(out) :: df ! !debug if (loptimise_ders) der_call_count(k,icount_der5,j,1) = & !DERCOUNT !debug der_call_count(k,icount_der5,j,1) + 1 !DERCOUNT ! if (present(ignoredx)) then igndx = ignoredx else igndx = .false. endif ! if (.not. lequidist(j)) & call fatal_error('der5','NOT IMPLEMENTED for no equidistant grid') ! if (lspherical_coords) & call fatal_error('der5','NOT IMPLEMENTED for spherical coordinates') ! if (j==1) then if (nxgrid/=1) then if (igndx) then fac=1.0 else fac=1/dx**5 endif df=fac*(+ 2.5*(f(l1+1:l2+1,m,n,k)-f(l1-1:l2-1,m,n,k)) & - 2.0*(f(l1+2:l2+2,m,n,k)-f(l1-2:l2-2,m,n,k)) & + 0.5*(f(l1+3:l2+3,m,n,k)-f(l1-3:l2-3,m,n,k))) else df=0. endif elseif (j==2) then if (nygrid/=1) then if (igndx) then fac=1.0 else fac=1/dy**5 endif df=fac*(+ 2.5*(f(l1:l2,m+1,n,k)-f(l1:l2,m-1,n,k)) & - 2.0*(f(l1:l2,m+2,n,k)-f(l1:l2,m-2,n,k)) & + 0.5*(f(l1:l2,m+3,n,k)-f(l1:l2,m-3,n,k))) if (lcylindrical_coords) df=df*rcyl_mn1**5 else df=0. endif elseif (j==3) then if (nzgrid/=1) then if (igndx) then fac=1.0 else fac=1/dz**5 endif df=fac*(+ 2.5*(f(l1:l2,m,n+1,k)-f(l1:l2,m,n-1,k)) & - 2.0*(f(l1:l2,m,n+2,k)-f(l1:l2,m,n-2,k)) & + 0.5*(f(l1:l2,m,n+3,k)-f(l1:l2,m,n-3,k))) else df=0. endif endif ! endsubroutine der5 !*********************************************************************** subroutine der6(f,k,df,j,ignoredx,upwind) ! ! Calculate 6th derivative of a scalar, get scalar ! Used for hyperdiffusion that affects small wave numbers as little as ! possible (useful for density). ! The optional flag IGNOREDX is useful for numerical purposes, where ! you want to affect the Nyquist scale in each direction, independent of ! the ratios dx:dy:dz. ! The optional flag UPWIND is a variant thereof, which calculates ! D^(6)*dx^5/840, which is the upwind correction of centered derivatives. ! ! 8-jul-02/wolf: coded ! 25-aug-09/axel: copied from deriv, but not adapted yet ! use Cdata ! real, dimension (mx,my,mz,mfarray) :: f real, dimension (nx) :: df,fac integer :: j,k logical, optional :: ignoredx,upwind logical :: igndx,upwnd ! intent(in) :: f,k,j,ignoredx intent(out) :: df ! !debug if (loptimise_ders) der_call_count(k,icount_der6,j,1) = & !DERCOUNT !debug der_call_count(k,icount_der6,j,1) + 1 !DERCOUNT ! if (present(ignoredx)) then igndx = ignoredx else igndx = .false. endif if (present(upwind)) then upwnd = upwind else upwnd = .false. if (.not. lequidist(j)) then call fatal_error('der6','NOT IMPLEMENTED for non-equidistant grid') endif if ((.not.lcartesian_coords).and.(.not.igndx)) then call fatal_error('der6','in non-cartesian coordinates '//& 'just works if upwinding is used') endif endif ! ! if (j==1) then if (nxgrid/=1) then if (igndx) then fac=1.0 else if (upwnd) then fac=(1.0/840)*dx_1(l1:l2) else fac=1/dx**6 endif df=fac*(- 20.0* f(l1:l2,m,n,k) & + 15.0*(f(l1+1:l2+1,m,n,k)+f(l1-1:l2-1,m,n,k)) & - 6.0*(f(l1+2:l2+2,m,n,k)+f(l1-2:l2-2,m,n,k)) & + (f(l1+3:l2+3,m,n,k)+f(l1-3:l2-3,m,n,k))) else df=0. endif elseif (j==2) then if (nygrid/=1) then if (igndx) then fac=1.0 else if (upwnd) then fac=(1.0/840)*dy_1(m) else fac=1/dy**6 endif df=fac*(- 20.0* f(l1:l2,m ,n,k) & + 15.0*(f(l1:l2,m+1,n,k)+f(l1:l2,m-1,n,k)) & - 6.0*(f(l1:l2,m+2,n,k)+f(l1:l2,m-2,n,k)) & + (f(l1:l2,m+3,n,k)+f(l1:l2,m-3,n,k))) else df=0. endif elseif (j==3) then if (nzgrid/=1) then if (igndx) then fac=1. else if (upwnd) then fac=(1.0/840)*dz_1(n) else fac=1/dz**6 endif df=fac*(- 20.0* f(l1:l2,m,n ,k) & + 15.0*(f(l1:l2,m,n+1,k)+f(l1:l2,m,n-1,k)) & - 6.0*(f(l1:l2,m,n+2,k)+f(l1:l2,m,n-2,k)) & + (f(l1:l2,m,n+3,k)+f(l1:l2,m,n-3,k))) else df=0. endif endif ! endsubroutine der6 !*********************************************************************** subroutine der6_other(f,df,j,ignoredx,upwind) ! ! Calculate 6th derivative of a scalar, get scalar ! Used for hyperdiffusion that affects small wave numbers as little as ! possible (useful for density). ! The optional flag IGNOREDX is useful for numerical purposes, where ! you want to affect the Nyquist scale in each direction, independent of ! the ratios dx:dy:dz. ! The optional flag UPWIND is a variant thereof, which calculates ! D^(6)*dx^5/840, which is the upwind correction of centered derivatives. ! ! 8-jul-02/wolf: coded ! 25-aug-09/axel: copied from deriv, but not adapted yet ! use Cdata ! real, dimension (mx,my,mz) :: f real, dimension (nx) :: df,fac integer :: j logical, optional :: ignoredx,upwind logical :: igndx,upwnd ! intent(in) :: f,j,ignoredx intent(out) :: df ! !debug if (loptimise_ders) der_call_count(k,icount_der6,j,1) = & !DERCOUNT !debug der_call_count(k,icount_der6,j,1) + 1 !DERCOUNT ! if (present(ignoredx)) then igndx = ignoredx else igndx = .false. endif if (present(upwind)) then upwnd = upwind else upwnd = .false. if (.not. lequidist(j)) & call fatal_error('der6_other','NOT IMPLEMENTED for '//& 'non equidistant grid') if (.not.lcartesian_coords) & call fatal_error('der6_other','in non-cartesian coordinates '//& 'just works if upwiding is used') endif ! if (j==1) then if (nxgrid/=1) then if (igndx) then fac=1.0 else if (upwnd) then fac=(1.0/840)*dx_1(l1:l2) else fac=1/dx**6 endif df=fac*(- 20.0* f(l1:l2,m,n) & + 15.0*(f(l1+1:l2+1,m,n)+f(l1-1:l2-1,m,n)) & - 6.0*(f(l1+2:l2+2,m,n)+f(l1-2:l2-2,m,n)) & + (f(l1+3:l2+3,m,n)+f(l1-3:l2-3,m,n))) else df=0. endif elseif (j==2) then if (nygrid/=1) then if (igndx) then fac=1.0 else if (upwnd) then fac=(1.0/840)*dy_1(m) else fac=1/dy**6 endif df=fac*(- 20.0* f(l1:l2,m ,n) & + 15.0*(f(l1:l2,m+1,n)+f(l1:l2,m-1,n)) & - 6.0*(f(l1:l2,m+2,n)+f(l1:l2,m-2,n)) & + (f(l1:l2,m+3,n)+f(l1:l2,m-3,n))) else df=0. endif elseif (j==3) then if (nzgrid/=1) then if (igndx) then fac=1.0 else if (upwnd) then fac=(1.0/840)*dz_1(n) else fac=1/dz**6 endif df=fac*(- 20.0* f(l1:l2,m,n ) & + 15.0*(f(l1:l2,m,n+1)+f(l1:l2,m,n-1)) & - 6.0*(f(l1:l2,m,n+2)+f(l1:l2,m,n-2)) & + (f(l1:l2,m,n+3)+f(l1:l2,m,n-3))) else df=0. endif endif ! endsubroutine der6_other !*********************************************************************** subroutine derij_main(f,k,df,i,j) ! ! calculate 2nd derivative with respect to two different directions ! input: scalar, output: scalar ! accurate to 6th order, explicit, periodic ! ! 8-sep-01/axel: coded ! 25-jun-04/tobi+wolf: adapted for non-equidistant grids ! 14-nov-06/wolf: implemented bidiagonal scheme ! 25-aug-09/axel: adapted from deriv ! use Cdata ! real, dimension (mx,my,mz,mfarray) :: f real, dimension (nx) :: df,fac integer :: i,j,k ! !debug if (loptimise_ders) der_call_count(k,icount_derij,i,j) = & !DERCOUNT !debug der_call_count(k,icount_derij,i,j) + 1 !DERCOUNT ! if (lbidiagonal_derij) then ! ! Use bidiagonal mixed-derivative operator, i.e. ! employ only the three neighbouring points on each of the four ! half-diagonals. This gives 6th-order mixed derivatives as the ! version below, but involves just 12 points instead of 36. ! if ((i==1.and.j==2).or.(i==2.and.j==1)) then if (nxgrid/=1.and.nygrid/=1) then fac=(1./20160.)*dx_1(l1:l2)*dy_1(m) df=fac*( & 8064.*( f(l1+1:l2+1,m+1,n,k)-f(l1-1:l2-1,m+1,n,k) & +f(l1-1:l2-1,m-1,n,k)-f(l1+1:l2+1,m-1,n,k)) & -1008.*( f(l1+2:l2+2,m+2,n,k)-f(l1-2:l2-2,m+2,n,k) & +f(l1-2:l2-2,m-2,n,k)-f(l1+2:l2+2,m-2,n,k)) & + 128.*( f(l1+3:l2+3,m+3,n,k)-f(l1-3:l2-3,m+3,n,k) & +f(l1-3:l2-3,m-3,n,k)-f(l1+3:l2+3,m-3,n,k)) & - 9.*( f(l1+4:l2+4,m+4,n,k)-f(l1-4:l2-4,m+4,n,k) & +f(l1-4:l2-4,m-4,n,k)-f(l1+4:l2+4,m-4,n,k)) & ) else df=0. if (ip<=5) print*, 'derij: Degenerate case in x- or y-direction' endif elseif ((i==2.and.j==3).or.(i==3.and.j==2)) then if (nygrid/=1.and.nzgrid/=1) then fac=(1./20160.)*dy_1(m)*dz_1(n) df=fac*( & 8064.*( f(l1:l2,m+1,n+1,k)-f(l1:l2,m+1,n-1,k) & +f(l1:l2,m-1,n-1,k)-f(l1:l2,m-1,n+1,k)) & -1008.*( f(l1:l2,m+2,n+2,k)-f(l1:l2,m+2,n-2,k) & +f(l1:l2,m-2,n-2,k)-f(l1:l2,m-2,n+2,k)) & + 128.*( f(l1:l2,m+3,n+3,k)-f(l1:l2,m+3,n-3,k) & +f(l1:l2,m-3,n-3,k)-f(l1:l2,m-3,n+3,k)) & - 9.*( f(l1:l2,m+4,n+4,k)-f(l1:l2,m+4,n-4,k) & +f(l1:l2,m-4,n-4,k)-f(l1:l2,m-4,n+4,k)) & ) else df=0. if (ip<=5) print*, 'derij: Degenerate case in y- or z-direction' endif elseif ((i==3.and.j==1).or.(i==1.and.j==3)) then if (nzgrid/=1.and.nxgrid/=1) then fac=(1./20160.)*dz_1(n)*dx_1(l1:l2) df=fac*( & 8064.*( f(l1+1:l2+1,m,n+1,k)-f(l1-1:l2-1,m,n+1,k) & +f(l1-1:l2-1,m,n-1,k)-f(l1+1:l2+1,m,n-1,k)) & -1008.*( f(l1+2:l2+2,m,n+2,k)-f(l1-2:l2-2,m,n+2,k) & +f(l1-2:l2-2,m,n-2,k)-f(l1+2:l2+2,m,n-2,k)) & + 128.*( f(l1+3:l2+3,m,n+3,k)-f(l1-3:l2-3,m,n+3,k) & +f(l1-3:l2-3,m,n-3,k)-f(l1+3:l2+3,m,n-3,k)) & - 9.*( f(l1+4:l2+4,m,n+4,k)-f(l1-4:l2-4,m,n+4,k) & +f(l1-4:l2-4,m,n-4,k)-f(l1+4:l2+4,m,n-4,k)) & ) else df=0. if (ip<=5) print*, 'derij: Degenerate case in x- or z-direction' endif endif ! else ! not using bidiagonal mixed derivatives ! ! This is the old, straight-forward scheme ! if ((i==1.and.j==2).or.(i==2.and.j==1)) then if (nxgrid/=1.and.nygrid/=1) then fac=(1./840.**2)*dx_1(l1:l2)*dy_1(m) df=fac*( & 672.*((672.*(f(l1+1:l2+1,m+1,n,k)-f(l1-1:l2-1,m+1,n,k)) & -9.*(f(l1+2:l2+2,m+1,n,k)-f(l1-2:l2-2,m+1,n,k)) & +(f(l1+3:l2+3,m+1,n,k)-f(l1-3:l2-3,m+1,n,k))) & -(672.*(f(l1+1:l2+1,m-1,n,k)-f(l1-1:l2-1,m-1,n,k)) & -9.*(f(l1+2:l2+2,m-1,n,k)-f(l1-2:l2-2,m-1,n,k)) & +(f(l1+3:l2+3,m-1,n,k)-f(l1-3:l2-3,m-1,n,k))))& -9.*((672.*(f(l1+1:l2+1,m+2,n,k)-f(l1-1:l2-1,m+2,n,k)) & -9.*(f(l1+2:l2+2,m+2,n,k)-f(l1-2:l2-2,m+2,n,k)) & +(f(l1+3:l2+3,m+2,n,k)-f(l1-3:l2-3,m+2,n,k))) & -(672.*(f(l1+1:l2+1,m-2,n,k)-f(l1-1:l2-1,m-2,n,k)) & -9.*(f(l1+2:l2+2,m-2,n,k)-f(l1-2:l2-2,m-2,n,k)) & +(f(l1+3:l2+3,m-2,n,k)-f(l1-3:l2-3,m-2,n,k))))& +((672.*(f(l1+1:l2+1,m+3,n,k)-f(l1-1:l2-1,m+3,n,k)) & -9.*(f(l1+2:l2+2,m+3,n,k)-f(l1-2:l2-2,m+3,n,k)) & +(f(l1+3:l2+3,m+3,n,k)-f(l1-3:l2-3,m+3,n,k))) & -(672.*(f(l1+1:l2+1,m-3,n,k)-f(l1-1:l2-1,m-3,n,k)) & -9.*(f(l1+2:l2+2,m-3,n,k)-f(l1-2:l2-2,m-3,n,k)) & +(f(l1+3:l2+3,m-3,n,k)-f(l1-3:l2-3,m-3,n,k))))& ) else df=0. if (ip<=5) print*, 'derij: Degenerate case in x- or y-direction' endif elseif ((i==2.and.j==3).or.(i==3.and.j==2)) then if (nygrid/=1.and.nzgrid/=1) then fac=(1./840.**2)*dy_1(m)*dz_1(n) df=fac*( & 672.*((672.*(f(l1:l2,m+1,n+1,k)-f(l1:l2,m-1,n+1,k)) & -9.*(f(l1:l2,m+2,n+1,k)-f(l1:l2,m-2,n+1,k)) & +(f(l1:l2,m+3,n+1,k)-f(l1:l2,m-3,n+1,k))) & -(672.*(f(l1:l2,m+1,n-1,k)-f(l1:l2,m-1,n-1,k)) & -9.*(f(l1:l2,m+2,n-1,k)-f(l1:l2,m-2,n-1,k)) & +(f(l1:l2,m+3,n-1,k)-f(l1:l2,m-3,n-1,k))))& -9.*((672.*(f(l1:l2,m+1,n+2,k)-f(l1:l2,m-1,n+2,k)) & -9.*(f(l1:l2,m+2,n+2,k)-f(l1:l2,m-2,n+2,k)) & +(f(l1:l2,m+3,n+2,k)-f(l1:l2,m-3,n+2,k))) & -(672.*(f(l1:l2,m+1,n-2,k)-f(l1:l2,m-1,n-2,k)) & -9.*(f(l1:l2,m+2,n-2,k)-f(l1:l2,m-2,n-2,k)) & +(f(l1:l2,m+3,n-2,k)-f(l1:l2,m-3,n-2,k))))& +((672.*(f(l1:l2,m+1,n+3,k)-f(l1:l2,m-1,n+3,k)) & -9.*(f(l1:l2,m+2,n+3,k)-f(l1:l2,m-2,n+3,k)) & +(f(l1:l2,m+3,n+3,k)-f(l1:l2,m-3,n+3,k))) & -(672.*(f(l1:l2,m+1,n-3,k)-f(l1:l2,m-1,n-3,k)) & -9.*(f(l1:l2,m+2,n-3,k)-f(l1:l2,m-2,n-3,k)) & +(f(l1:l2,m+3,n-3,k)-f(l1:l2,m-3,n-3,k))))& ) else df=0. if (ip<=5) print*, 'derij: Degenerate case in y- or z-direction' endif elseif ((i==3.and.j==1).or.(i==1.and.j==3)) then if (nzgrid/=1.and.nxgrid/=1) then fac=(1./840.**2)*dz_1(n)*dx_1(l1:l2) df=fac*( & 672.*((672.*(f(l1+1:l2+1,m,n+1,k)-f(l1-1:l2-1,m,n+1,k)) & -9.*(f(l1+2:l2+2,m,n+1,k)-f(l1-2:l2-2,m,n+1,k)) & +(f(l1+3:l2+3,m,n+1,k)-f(l1-3:l2-3,m,n+1,k))) & -(672.*(f(l1+1:l2+1,m,n-1,k)-f(l1-1:l2-1,m,n-1,k)) & -9.*(f(l1+2:l2+2,m,n-1,k)-f(l1-2:l2-2,m,n-1,k)) & +(f(l1+3:l2+3,m,n-1,k)-f(l1-3:l2-3,m,n-1,k))))& -9.*((672.*(f(l1+1:l2+1,m,n+2,k)-f(l1-1:l2-1,m,n+2,k)) & -9.*(f(l1+2:l2+2,m,n+2,k)-f(l1-2:l2-2,m,n+2,k)) & +(f(l1+3:l2+3,m,n+2,k)-f(l1-3:l2-3,m,n+2,k))) & -(672.*(f(l1+1:l2+1,m,n-2,k)-f(l1-1:l2-1,m,n-2,k)) & -9.*(f(l1+2:l2+2,m,n-2,k)-f(l1-2:l2-2,m,n-2,k)) & +(f(l1+3:l2+3,m,n-2,k)-f(l1-3:l2-3,m,n-2,k))))& +((672.*(f(l1+1:l2+1,m,n+3,k)-f(l1-1:l2-1,m,n+3,k)) & -9.*(f(l1+2:l2+2,m,n+3,k)-f(l1-2:l2-2,m,n+3,k)) & +(f(l1+3:l2+3,m,n+3,k)-f(l1-3:l2-3,m,n+3,k))) & -(672.*(f(l1+1:l2+1,m,n-3,k)-f(l1-1:l2-1,m,n-3,k)) & -9.*(f(l1+2:l2+2,m,n-3,k)-f(l1-2:l2-2,m,n-3,k)) & +(f(l1+3:l2+3,m,n-3,k)-f(l1-3:l2-3,m,n-3,k))))& ) else df=0. if (ip<=5) print*, 'derij: Degenerate case in x- or z-direction' endif endif ! endif ! bidiagonal derij ! ! Spherical polars. The comments about "minus extra terms" refer to the ! presence of extra terms that are being evaluated later in gij_etc. ! if (lspherical_coords) then if ((i==1.and.j==2)) df=df*r1_mn if ((i==2.and.j==1)) df=df*r1_mn !(minus extra terms) if ((i==1.and.j==3)) df=df*r1_mn*sin1th(m) if ((i==3.and.j==1)) df=df*r1_mn*sin1th(m) !(minus extra terms) if ((i==2.and.j==3)) df=df*r2_mn*sin1th(m) if ((i==3.and.j==2)) df=df*r2_mn*sin1th(m) !(minus extra terms) endif ! if (lcylindrical_coords) then if ((i==1.and.j==2)) df=df*rcyl_mn1 if ((i==2.and.j==1)) df=df*rcyl_mn1 if ((i==1.and.j==3)) df=df if ((i==3.and.j==1)) df=df if ((i==2.and.j==3)) df=df*rcyl_mn1 if ((i==3.and.j==2)) df=df*rcyl_mn1 endif ! endsubroutine derij_main !*********************************************************************** subroutine derij_other(f,df,i,j) ! ! calculate 2nd derivative with respect to two different directions ! input: scalar, output: scalar ! accurate to 8th order, explicit, periodic ! ! 8-sep-01/axel: coded ! 25-jun-04/tobi+wolf: adapted for non-equidistant grids ! 14-nov-06/wolf: implemented bidiagonal scheme ! 25-aug-09/axel: adapted from deriv ! use Cdata ! real, dimension (mx,my,mz) :: f real, dimension (nx) :: df,fac integer :: i,j ! !debug if (loptimise_ders) der_call_count(k,icount_derij,i,j) = & !DERCOUNT !debug der_call_count(k,icount_derij,i,j) + 1 !DERCOUNT ! if (lbidiagonal_derij) then ! ! Use bidiagonal mixed-derivative operator, i.e. ! employ only the three neighbouring points on each of the four ! half-diagonals. This gives 6th-order mixed derivatives as the ! version below, but involves just 12 points instead of 36. ! if ((i==1.and.j==2).or.(i==2.and.j==1)) then if (nxgrid/=1.and.nygrid/=1) then fac=(1./720.)*dx_1(l1:l2)*dy_1(m) df=fac*( & 270.*( f(l1+1:l2+1,m+1,n)-f(l1-1:l2-1,m+1,n) & +f(l1-1:l2-1,m-1,n)-f(l1+1:l2+1,m-1,n)) & - 27.*( f(l1+2:l2+2,m+2,n)-f(l1-2:l2-2,m+2,n) & +f(l1-2:l2-2,m-2,n)-f(l1+2:l2+2,m-2,n)) & + 2.*( f(l1+3:l2+3,m+3,n)-f(l1-3:l2-3,m+3,n) & +f(l1-3:l2-3,m-3,n)-f(l1+3:l2+3,m-3,n)) & ) else df=0. if (ip<=5) print*, 'derij: Degenerate case in x- or y-direction' endif elseif ((i==2.and.j==3).or.(i==3.and.j==2)) then if (nygrid/=1.and.nzgrid/=1) then fac=(1./720.)*dy_1(m)*dz_1(n) df=fac*( & 270.*( f(l1:l2,m+1,n+1)-f(l1:l2,m+1,n-1) & +f(l1:l2,m-1,n-1)-f(l1:l2,m-1,n+1)) & - 27.*( f(l1:l2,m+2,n+2)-f(l1:l2,m+2,n-2) & +f(l1:l2,m-2,n-2)-f(l1:l2,m-2,n+2)) & + 2.*( f(l1:l2,m+3,n+3)-f(l1:l2,m+3,n-3) & +f(l1:l2,m-3,n-3)-f(l1:l2,m-3,n+3)) & ) else df=0. if (ip<=5) print*, 'derij: Degenerate case in y- or z-direction' endif elseif ((i==3.and.j==1).or.(i==1.and.j==3)) then if (nzgrid/=1.and.nxgrid/=1) then fac=(1./720.)*dz_1(n)*dx_1(l1:l2) df=fac*( & 270.*( f(l1+1:l2+1,m,n+1)-f(l1-1:l2-1,m,n+1) & +f(l1-1:l2-1,m,n-1)-f(l1+1:l2+1,m,n-1)) & - 27.*( f(l1+2:l2+2,m,n+2)-f(l1-2:l2-2,m,n+2) & +f(l1-2:l2-2,m,n-2)-f(l1+2:l2+2,m,n-2)) & + 2.*( f(l1+3:l2+3,m,n+3)-f(l1-3:l2-3,m,n+3) & +f(l1-3:l2-3,m,n-3)-f(l1+3:l2+3,m,n-3)) & ) else df=0. if (ip<=5) print*, 'derij: Degenerate case in x- or z-direction' endif endif ! else ! not using bidiagonal mixed derivatives ! ! This is the old, straight-forward scheme ! if ((i==1.and.j==2).or.(i==2.and.j==1)) then if (nxgrid/=1.and.nygrid/=1) then fac=(1./840.**2)*dx_1(l1:l2)*dy_1(m) df=fac*( & 672.*((672.*(f(l1+1:l2+1,m+1,n)-f(l1-1:l2-1,m+1,n)) & -9.*(f(l1+2:l2+2,m+1,n)-f(l1-2:l2-2,m+1,n)) & +(f(l1+3:l2+3,m+1,n)-f(l1-3:l2-3,m+1,n))) & -(672.*(f(l1+1:l2+1,m-1,n)-f(l1-1:l2-1,m-1,n)) & -9.*(f(l1+2:l2+2,m-1,n)-f(l1-2:l2-2,m-1,n)) & +(f(l1+3:l2+3,m-1,n)-f(l1-3:l2-3,m-1,n))))& -9.*((672.*(f(l1+1:l2+1,m+2,n)-f(l1-1:l2-1,m+2,n)) & -9.*(f(l1+2:l2+2,m+2,n)-f(l1-2:l2-2,m+2,n)) & +(f(l1+3:l2+3,m+2,n)-f(l1-3:l2-3,m+2,n))) & -(672.*(f(l1+1:l2+1,m-2,n)-f(l1-1:l2-1,m-2,n)) & -9.*(f(l1+2:l2+2,m-2,n)-f(l1-2:l2-2,m-2,n)) & +(f(l1+3:l2+3,m-2,n)-f(l1-3:l2-3,m-2,n))))& +((672.*(f(l1+1:l2+1,m+3,n)-f(l1-1:l2-1,m+3,n)) & -9.*(f(l1+2:l2+2,m+3,n)-f(l1-2:l2-2,m+3,n)) & +(f(l1+3:l2+3,m+3,n)-f(l1-3:l2-3,m+3,n))) & -(672.*(f(l1+1:l2+1,m-3,n)-f(l1-1:l2-1,m-3,n)) & -9.*(f(l1+2:l2+2,m-3,n)-f(l1-2:l2-2,m-3,n)) & +(f(l1+3:l2+3,m-3,n)-f(l1-3:l2-3,m-3,n))))& ) else df=0. if (ip<=5) print*, 'derij: Degenerate case in x- or y-direction' endif elseif ((i==2.and.j==3).or.(i==3.and.j==2)) then if (nygrid/=1.and.nzgrid/=1) then fac=(1./840.**2)*dy_1(m)*dz_1(n) df=fac*( & 672.*((672.*(f(l1:l2,m+1,n+1)-f(l1:l2,m-1,n+1)) & -9.*(f(l1:l2,m+2,n+1)-f(l1:l2,m-2,n+1)) & +(f(l1:l2,m+3,n+1)-f(l1:l2,m-3,n+1))) & -(672.*(f(l1:l2,m+1,n-1)-f(l1:l2,m-1,n-1)) & -9.*(f(l1:l2,m+2,n-1)-f(l1:l2,m-2,n-1)) & +(f(l1:l2,m+3,n-1)-f(l1:l2,m-3,n-1))))& -9.*((672.*(f(l1:l2,m+1,n+2)-f(l1:l2,m-1,n+2)) & -9.*(f(l1:l2,m+2,n+2)-f(l1:l2,m-2,n+2)) & +(f(l1:l2,m+3,n+2)-f(l1:l2,m-3,n+2))) & -(672.*(f(l1:l2,m+1,n-2)-f(l1:l2,m-1,n-2)) & -9.*(f(l1:l2,m+2,n-2)-f(l1:l2,m-2,n-2)) & +(f(l1:l2,m+3,n-2)-f(l1:l2,m-3,n-2))))& +((672.*(f(l1:l2,m+1,n+3)-f(l1:l2,m-1,n+3)) & -9.*(f(l1:l2,m+2,n+3)-f(l1:l2,m-2,n+3)) & +(f(l1:l2,m+3,n+3)-f(l1:l2,m-3,n+3))) & -(672.*(f(l1:l2,m+1,n-3)-f(l1:l2,m-1,n-3)) & -9.*(f(l1:l2,m+2,n-3)-f(l1:l2,m-2,n-3)) & +(f(l1:l2,m+3,n-3)-f(l1:l2,m-3,n-3))))& ) else df=0. if (ip<=5) print*, 'derij: Degenerate case in y- or z-direction' endif elseif ((i==3.and.j==1).or.(i==1.and.j==3)) then if (nzgrid/=1.and.nxgrid/=1) then fac=(1./840.**2)*dz_1(n)*dx_1(l1:l2) df=fac*( & 672.*((672.*(f(l1+1:l2+1,m,n+1)-f(l1-1:l2-1,m,n+1)) & -9.*(f(l1+2:l2+2,m,n+1)-f(l1-2:l2-2,m,n+1)) & +(f(l1+3:l2+3,m,n+1)-f(l1-3:l2-3,m,n+1))) & -(672.*(f(l1+1:l2+1,m,n-1)-f(l1-1:l2-1,m,n-1)) & -9.*(f(l1+2:l2+2,m,n-1)-f(l1-2:l2-2,m,n-1)) & +(f(l1+3:l2+3,m,n-1)-f(l1-3:l2-3,m,n-1))))& -9.*((672.*(f(l1+1:l2+1,m,n+2)-f(l1-1:l2-1,m,n+2)) & -9.*(f(l1+2:l2+2,m,n+2)-f(l1-2:l2-2,m,n+2)) & +(f(l1+3:l2+3,m,n+2)-f(l1-3:l2-3,m,n+2))) & -(672.*(f(l1+1:l2+1,m,n-2)-f(l1-1:l2-1,m,n-2)) & -9.*(f(l1+2:l2+2,m,n-2)-f(l1-2:l2-2,m,n-2)) & +(f(l1+3:l2+3,m,n-2)-f(l1-3:l2-3,m,n-2))))& +((672.*(f(l1+1:l2+1,m,n+3)-f(l1-1:l2-1,m,n+3)) & -9.*(f(l1+2:l2+2,m,n+3)-f(l1-2:l2-2,m,n+3)) & +(f(l1+3:l2+3,m,n+3)-f(l1-3:l2-3,m,n+3))) & -(672.*(f(l1+1:l2+1,m,n-3)-f(l1-1:l2-1,m,n-3)) & -9.*(f(l1+2:l2+2,m,n-3)-f(l1-2:l2-2,m,n-3)) & +(f(l1+3:l2+3,m,n-3)-f(l1-3:l2-3,m,n-3))))& ) else df=0. if (ip<=5) print*, 'derij: Degenerate case in x- or z-direction' endif endif ! endif ! bidiagonal derij ! ! Spherical polars. The comments about "minus extra terms" refer to the ! presence of extra terms that are being evaluated later in gij_etc. ! if (lspherical_coords) then if ((i==1.and.j==2)) df=df*r1_mn if ((i==2.and.j==1)) df=df*r1_mn !(minus extra terms) if ((i==1.and.j==3)) df=df*r1_mn*sin1th(m) if ((i==3.and.j==1)) df=df*r1_mn*sin1th(m) !(minus extra terms) if ((i==2.and.j==3)) df=df*r2_mn*sin1th(m) if ((i==3.and.j==2)) df=df*r2_mn*sin1th(m) !(minus extra terms) endif ! if (lcylindrical_coords) then if ((i==1.and.j==2)) df=df*rcyl_mn1 if ((i==2.and.j==1)) df=df*rcyl_mn1 if ((i==1.and.j==3)) df=df if ((i==3.and.j==1)) df=df if ((i==2.and.j==3)) df=df*rcyl_mn1 if ((i==3.and.j==2)) df=df*rcyl_mn1 endif ! endsubroutine derij_other !*********************************************************************** subroutine der5i1j(f,k,df,i,j) ! ! Calculate 6th derivative with respect to two different directions. ! ! 05-dec-06/anders: adapted from derij ! 25-aug-09/axel: copied from deriv, but not adapted yet ! use Cdata ! real, dimension (mx,my,mz,mfarray) :: f real, dimension (nx) :: df,fac integer :: i,j,k ! !debug if (loptimise_ders) der_call_count(k,icount_derij,i,j) = & !DERCOUNT !debug der_call_count(k,icount_derij,i,j) + 1 !DERCOUNT ! df=0.0 if ((i==1.and.j==1)) then if (nxgrid/=1) then call der6(f,k,df,j) else df=0. if (ip<=5) print*, 'der5i1j: Degenerate case in x-direction' endif elseif ((i==2.and.j==2)) then if (nygrid/=1) then call der6(f,k,df,j) else df=0. if (ip<=5) print*, 'der5i1j: Degenerate case in y-direction' endif elseif ((i==3.and.j==3)) then if (nzgrid/=1) then call der6(f,k,df,j) else df=0. if (ip<=5) print*, 'der5i1j: Degenerate case in z-direction' endif elseif ((i==1.and.j==2)) then if (nxgrid/=1.and.nygrid/=1) then fac=dx_1(l1:l2)**5*1/840.0*dy_1(m) df=fac*( & 2.5*((672.*(f(l1+1:l2+1,m+1,n,k)-f(l1+1:l2+1,m-1,n,k)) & -9.*(f(l1+1:l2+1,m+2,n,k)-f(l1+1:l2+1,m-2,n,k)) & +(f(l1+1:l2+1,m+3,n,k)-f(l1+1:l2+1,m-3,n,k))) & -(672.*(f(l1-1:l2-1,m+1,n,k)-f(l1-1:l2-1,m-1,n,k)) & -9.*(f(l1-1:l2-1,m+2,n,k)-f(l1-1:l2-1,m-2,n,k)) & +(f(l1-1:l2-1,m+3,n,k)-f(l1-1:l2-1,m-3,n,k))))& -2.0*((672.*(f(l1+2:l2+2,m+1,n,k)-f(l1+2:l2+2,m-1,n,k)) & -9.*(f(l1+2:l2+2,m+2,n,k)-f(l1+2:l2+2,m-2,n,k)) & +(f(l1+2:l2+2,m+3,n,k)-f(l1+2:l2+2,m-3,n,k))) & -(672.*(f(l1-2:l2-2,m+1,n,k)-f(l1-2:l2-2,m-1,n,k)) & -9.*(f(l1-2:l2-2,m+2,n,k)-f(l1-2:l2-2,m-2,n,k)) & +(f(l1-2:l2-2,m+3,n,k)-f(l1-2:l2-2,m-3,n,k))))& +0.5*((672.*(f(l1+3:l2+3,m+1,n,k)-f(l1+3:l2+3,m-1,n,k)) & -9.*(f(l1+3:l2+3,m+2,n,k)-f(l1+3:l2+3,m-2,n,k)) & +(f(l1+3:l2+3,m+3,n,k)-f(l1+3:l2+3,m-3,n,k))) & -(672.*(f(l1-3:l2-3,m+1,n,k)-f(l1-3:l2-3,m-1,n,k)) & -9.*(f(l1-3:l2-3,m+2,n,k)-f(l1-3:l2-3,m-2,n,k)) & +(f(l1-3:l2-3,m+3,n,k)-f(l1-3:l2-3,m-3,n,k))))& ) else df=0. if (ip<=5) print*, 'der5i1j: Degenerate case in x- or y-direction' endif elseif ((i==2.and.j==1)) then if (nygrid/=1.and.nxgrid/=1) then fac=dy_1(m)**5*1/840.0*dx_1(l1:l2) df=fac*( & 2.5*((672.*(f(l1+1:l2+1,m+1,n,k)-f(l1-1:l2-1,m+1,n,k)) & -9.*(f(l1+2:l2+2,m+1,n,k)-f(l1-2:l2-2,m+1,n,k)) & +(f(l1+3:l2+3,m+1,n,k)-f(l1-3:l2-3,m+1,n,k))) & -(672.*(f(l1+1:l2+1,m-1,n,k)-f(l1-1:l2-1,m-1,n,k)) & -9.*(f(l1+2:l2+2,m-1,n,k)-f(l1-2:l2-2,m-1,n,k)) & +(f(l1+3:l2+3,m-1,n,k)-f(l1-3:l2-3,m-1,n,k))))& -2.0*((672.*(f(l1+1:l2+1,m+2,n,k)-f(l1-1:l2-1,m+2,n,k)) & -9.*(f(l1+2:l2+2,m+2,n,k)-f(l1-2:l2-2,m+2,n,k)) & +(f(l1+3:l2+3,m+2,n,k)-f(l1-3:l2-3,m+2,n,k))) & -(672.*(f(l1+1:l2+1,m-2,n,k)-f(l1-1:l2-1,m-2,n,k)) & -9.*(f(l1+2:l2+2,m-2,n,k)-f(l1-2:l2-2,m-2,n,k)) & +(f(l1+3:l2+3,m-2,n,k)-f(l1-3:l2-3,m-2,n,k))))& +0.5*((672.*(f(l1+1:l2+1,m+3,n,k)-f(l1-1:l2-1,m+3,n,k)) & -9.*(f(l1+2:l2+2,m+3,n,k)-f(l1-2:l2-2,m+3,n,k)) & +(f(l1+3:l2+3,m+3,n,k)-f(l1-3:l2-3,m+3,n,k))) & -(672.*(f(l1+1:l2+1,m-3,n,k)-f(l1-1:l2-1,m-3,n,k)) & -9.*(f(l1+2:l2+2,m-3,n,k)-f(l1-2:l2-2,m-3,n,k)) & +(f(l1+3:l2+3,m-3,n,k)-f(l1-3:l2-3,m-3,n,k))))& ) else df=0. if (ip<=5) print*, 'der5i1j: Degenerate case in y- or x-direction' endif elseif ((i==1.and.j==3)) then if (nxgrid/=1.and.nzgrid/=1) then fac=dx_1(l1:l2)**5*1/840.0*dz_1(n) df=fac*( & 2.5*((672.*(f(l1+1:l2+1,m,n+1,k)-f(l1+1:l2+1,m,n-1,k)) & -9.*(f(l1+1:l2+1,m,n+2,k)-f(l1+1:l2+1,m,n-2,k)) & +(f(l1+1:l2+1,m,n+3,k)-f(l1+1:l2+1,m,n-3,k))) & -(672.*(f(l1-1:l2-1,m,n+1,k)-f(l1-1:l2-1,m,n-1,k)) & -9.*(f(l1-1:l2-1,m,n+2,k)-f(l1-1:l2-1,m,n-2,k)) & +(f(l1-1:l2-1,m,n+3,k)-f(l1-1:l2-1,m,n-3,k))))& -2.0*((672.*(f(l1+2:l2+2,m,n+1,k)-f(l1+2:l2+2,m,n-1,k)) & -9.*(f(l1+2:l2+2,m,n+2,k)-f(l1+2:l2+2,m,n-2,k)) & +(f(l1+2:l2+2,m,n+3,k)-f(l1+2:l2+2,m,n-3,k))) & -(672.*(f(l1-2:l2-2,m,n+1,k)-f(l1-2:l2-2,m,n-1,k)) & -9.*(f(l1-2:l2-2,m,n+2,k)-f(l1-2:l2-2,m,n-2,k)) & +(f(l1-2:l2-2,m,n+3,k)-f(l1-2:l2-2,m,n-3,k))))& +0.5*((672.*(f(l1+3:l2+3,m,n+1,k)-f(l1+3:l2+3,m,n-1,k)) & -9.*(f(l1+3:l2+3,m,n+2,k)-f(l1+3:l2+3,m,n-2,k)) & +(f(l1+3:l2+3,m,n+3,k)-f(l1+3:l2+3,m,n-3,k))) & -(672.*(f(l1-3:l2-3,m,n+1,k)-f(l1-3:l2-3,m,n-1,k)) & -9.*(f(l1-3:l2-3,m,n+2,k)-f(l1-3:l2-3,m,n-2,k)) & +(f(l1-3:l2-3,m,n+3,k)-f(l1-3:l2-3,m,n-3,k))))& ) else df=0. if (ip<=5) print*, 'der5i1j: Degenerate case in x- or z-direction' endif elseif ((i==3.and.j==1)) then if (nzgrid/=1.and.nygrid/=1) then fac=dz_1(n)**5*1/840.0*dy_1(m) df=fac*( & 2.5*((672.*(f(l1+1:l2+1,m,n+1,k)-f(l1-1:l2-1,m,n+1,k)) & -9.*(f(l1+2:l2+2,m,n+1,k)-f(l1-2:l2-2,m,n+1,k)) & +(f(l1+3:l2+3,m,n+1,k)-f(l1-3:l2-3,m,n+1,k))) & -(672.*(f(l1+1:l2+1,m,n-1,k)-f(l1-1:l2-1,m,n-1,k)) & -9.*(f(l1+2:l2+2,m,n-1,k)-f(l1-2:l2-2,m,n-1,k)) & +(f(l1+3:l2+3,m,n-1,k)-f(l1-3:l2-3,m,n-1,k))))& -2.0*((672.*(f(l1+1:l2+1,m,n+2,k)-f(l1-1:l2-1,m,n+2,k)) & -9.*(f(l1+2:l2+2,m,n+2,k)-f(l1-2:l2-2,m,n+2,k)) & +(f(l1+3:l2+3,m,n+2,k)-f(l1-3:l2-3,m,n+2,k))) & -(672.*(f(l1+1:l2+1,m,n-2,k)-f(l1-1:l2-1,m,n-2,k)) & -9.*(f(l1+2:l2+2,m,n-2,k)-f(l1-2:l2-2,m,n-2,k)) & +(f(l1+3:l2+3,m,n-2,k)-f(l1-3:l2-3,m,n-2,k))))& +0.5*((672.*(f(l1+1:l2+1,m,n+3,k)-f(l1-1:l2-1,m,n+3,k)) & -9.*(f(l1+2:l2+2,m,n+3,k)-f(l1-2:l2-2,m,n+3,k)) & +(f(l1+3:l2+3,m,n+3,k)-f(l1-3:l2-3,m,n+3,k))) & -(672.*(f(l1+1:l2+1,m,n-3,k)-f(l1-1:l2-1,m,n-3,k)) & -9.*(f(l1+2:l2+2,m,n-3,k)-f(l1-2:l2-2,m,n-3,k)) & +(f(l1+3:l2+3,m,n-3,k)-f(l1-3:l2-3,m,n-3,k))))& ) else df=0. if (ip<=5) print*, 'der5i1j: Degenerate case in z- or x-direction' endif elseif ((i==2.and.j==3)) then if (nygrid/=1.and.nzgrid/=1) then fac=dy_1(m)**5*1/840.0*dz_1(n) df=fac*( & 2.5*((672.*(f(l1:l2,m+1,n+1,k)-f(l1:l2,m+1,n-1,k)) & -9.*(f(l1:l2,m+1,n+2,k)-f(l1:l2,m+1,n-2,k)) & +(f(l1:l2,m+1,n+3,k)-f(l1:l2,m+1,n-3,k))) & -(672.*(f(l1:l2,m-1,n+1,k)-f(l1:l2,m-1,n-1,k)) & -9.*(f(l1:l2,m-1,n+2,k)-f(l1:l2,m-1,n-2,k)) & +(f(l1:l2,m-1,n+3,k)-f(l1:l2,m-1,n-3,k))))& -2.0*((672.*(f(l1:l2,m+2,n+1,k)-f(l1:l2,m+2,n-1,k)) & -9.*(f(l1:l2,m+2,n+2,k)-f(l1:l2,m+2,n-2,k)) & +(f(l1:l2,m+2,n+3,k)-f(l1:l2,m+2,n-3,k))) & -(672.*(f(l1:l2,m-2,n+1,k)-f(l1:l2,m-2,n-1,k)) & -9.*(f(l1:l2,m-2,n+2,k)-f(l1:l2,m-2,n-2,k)) & +(f(l1:l2,m-2,n+3,k)-f(l1:l2,m-2,n-3,k))))& +0.5*((672.*(f(l1:l2,m+3,n+1,k)-f(l1:l2,m+3,n-1,k)) & -9.*(f(l1:l2,m+3,n+2,k)-f(l1:l2,m+3,n-2,k)) & +(f(l1:l2,m+3,n+3,k)-f(l1:l2,m+3,n-3,k))) & -(672.*(f(l1:l2,m-3,n+1,k)-f(l1:l2,m-3,n-1,k)) & -9.*(f(l1:l2,m-3,n+2,k)-f(l1:l2,m-3,n-2,k)) & +(f(l1:l2,m-3,n+3,k)-f(l1:l2,m-3,n-3,k))))& ) else df=0. if (ip<=5) print*, 'der5i1j: Degenerate case in y- or z-direction' endif elseif ((i==3.and.j==2)) then if (nzgrid/=1.and.nygrid/=1) then fac=dz_1(n)**5*1/840.0*dy_1(m) df=fac*( & 2.5*((672.*(f(l1:l2,m+1,n+1,k)-f(l1:l2,m-1,n+1,k)) & -9.*(f(l1:l2,m+2,n+1,k)-f(l1:l2,m-2,n+1,k)) & +(f(l1:l2,m+3,n+1,k)-f(l1:l2,m-3,n+1,k))) & -(672.*(f(l1:l2,m+1,n-1,k)-f(l1:l2,m-1,n-1,k)) & -9.*(f(l1:l2,m+2,n-1,k)-f(l1:l2,m-2,n-1,k)) & +(f(l1:l2,m+3,n-1,k)-f(l1:l2,m-3,n-1,k))))& -2.0*((672.*(f(l1:l2,m+1,n+2,k)-f(l1:l2,m-1,n+2,k)) & -9.*(f(l1:l2,m+2,n+2,k)-f(l1:l2,m-2,n+2,k)) & +(f(l1:l2,m+3,n+2,k)-f(l1:l2,m-3,n+2,k))) & -(672.*(f(l1:l2,m+1,n-2,k)-f(l1:l2,m-1,n-2,k)) & -9.*(f(l1:l2,m+2,n-2,k)-f(l1:l2,m-2,n-2,k)) & +(f(l1:l2,m+3,n-2,k)-f(l1:l2,m-3,n-2,k))))& +0.5*((672.*(f(l1:l2,m+1,n+3,k)-f(l1:l2,m-1,n+3,k)) & -9.*(f(l1:l2,m+2,n+3,k)-f(l1:l2,m-2,n+3,k)) & +(f(l1:l2,m+3,n+3,k)-f(l1:l2,m-3,n+3,k))) & -(672.*(f(l1:l2,m+1,n-3,k)-f(l1:l2,m-1,n-3,k)) & -9.*(f(l1:l2,m+2,n-3,k)-f(l1:l2,m-2,n-3,k)) & +(f(l1:l2,m+3,n-3,k)-f(l1:l2,m-3,n-3,k))))& ) else df=0. if (ip<=5) print*, 'der5i1j: Degenerate case in z- or y-direction' endif else print*, 'der5i1j: no such value for i,j=', i, j call fatal_error('der5i1j','') endif ! if (lspherical_coords.or.lcylindrical_coords) & call fatal_error('der5i1j','NOT IMPLEMENTED for non-cartesian coordinates') ! endsubroutine der5i1j !*********************************************************************** subroutine der_upwind1st(f,uu,k,df,j) ! ! First order upwind derivative of variable ! Useful for advecting non-logarithmic variables ! ! 25-aug-09/axel: copied from deriv, but not adapted yet ! use Cdata ! real, dimension (mx,my,mz,mfarray) :: f real, dimension (nx,3) :: uu real, dimension (nx) :: df integer :: j,k,l ! intent(in) :: f,uu,k,j intent(out) :: df ! !debug if (loptimise_ders) der_call_count(k,icount_der_upwind1st,j,1) = & !DERCOUNT !debug der_call_count(k,icount_der_upwind1st,j,1) + 1 !DERCOUNT ! if (.not. lequidist(j)) & call fatal_error('der_upwind1st','NOT IMPLEMENTED for no equidistant grid') ! if (lspherical_coords.or.lcylindrical_coords) & call fatal_error('der_upwind1st','NOT IMPLEMENTED for non-cartesian grid') ! if (j == 1) then if (nxgrid /= 1) then do l=1,nx if (uu(3+l,1) > 0.) then df(l) = (f(3+l,m,n,k) - f(3+l-1,m,n,k))/dx else df(l) = (f(3+l+1,m,n,k) - f(3+l,m,n,k))/dx endif enddo else df=0. if (ip<=5) print*, 'der_upwind1st: Degenerate case in x-direction' endif elseif (j == 2) then if (nygrid /= 1) then do l=1,nx if (uu(l,2) > 0.) then df(l) = (f(3+l,m,n,k) - f(3+l,m-1,n,k))/dy else df(l) = (f(3+l,m+1,n,k) - f(3+l,m,n,k))/dy endif enddo else df=0. if (ip<=5) print*, 'der_upwind1st: Degenerate case in y-direction' endif elseif (j == 3) then if (nzgrid /= 1) then do l=1,nx if (uu(l,3) > 0.) then df(l) = (f(3+l,m,n,k) - f(3+l,m,n-1,k))/dz else df(l) = (f(3+l,m,n+1,k) - f(3+l,m,n,k))/dz endif enddo else df=0. if (ip<=5) print*, 'der_upwind1st: Degenerate case in z-direction' endif endif ! endsubroutine der_upwind1st !*********************************************************************** subroutine der_onesided_4_slice_main(f,sgn,k,df,pos,j) ! ! Calculate x/y/z-derivative on a yz/xz/xy-slice at gridpoint pos. ! Uses a one-sided 4th order stencil. ! sgn = +1 for forward difference, sgn = -1 for backwards difference. ! ! Because of its original intended use in relation to solving ! characteristic equations on boundaries (NSCBC), this sub should ! return only PARTIAL derivatives, NOT COVARIANT. Applying the right ! scaling factors and connection terms should instead be done when ! solving the characteristic equations. ! ! 7-jul-08/arne: coded. ! 25-aug-09/axel: copied from deriv, but not adapted yet ! use Cdata ! real, dimension (mx,my,mz,mfarray) :: f real, dimension (:,:) :: df real :: fac integer :: pos,k,sgn,j ! intent(in) :: f,k,pos,sgn,j intent(out) :: df ! if (j==1) then if (nxgrid/=1) then fac=1./12.*dx_1(pos) df = fac*(-sgn*25*f(pos,m1:m2,n1:n2,k)& +sgn*48*f(pos+sgn*1,m1:m2,n1:n2,k)& -sgn*36*f(pos+sgn*2,m1:m2,n1:n2,k)& +sgn*16*f(pos+sgn*3,m1:m2,n1:n2,k)& -sgn*3 *f(pos+sgn*4,m1:m2,n1:n2,k)) else df=0. if (ip<=5) print*, 'der_onesided_4_slice: Degenerate case in x-directder_onesided_4_sliceion' endif elseif (j==2) then if (nygrid/=1) then fac=1./12.*dy_1(pos) df = fac*(-sgn*25*f(l1:l2,pos,n1:n2,k)& +sgn*48*f(l1:l2,pos+sgn*1,n1:n2,k)& -sgn*36*f(l1:l2,pos+sgn*2,n1:n2,k)& +sgn*16*f(l1:l2,pos+sgn*3,n1:n2,k)& -sgn*3 *f(l1:l2,pos+sgn*4,n1:n2,k)) else df=0. if (ip<=5) print*, 'der_onesided_4_slice: Degenerate case in y-direction' endif elseif (j==3) then if (nzgrid/=1) then fac=1./12.*dz_1(pos) df = fac*(-sgn*25*f(l1:l2,m1:m2,pos,k)& +sgn*48*f(l1:l2,m1:m2,pos+sgn*1,k)& -sgn*36*f(l1:l2,m1:m2,pos+sgn*1,k)& +sgn*16*f(l1:l2,m1:m2,pos+sgn*1,k)& -sgn*3 *f(l1:l2,m1:m2,pos+sgn*1,k)) else df=0. if (ip<=5) print*, 'der_onesided_4_slice: Degenerate case in z-direction' endif endif endsubroutine !*********************************************************************** subroutine der_onesided_4_slice_other(f,sgn,df,pos,j) ! ! Calculate x/y/z-derivative on a yz/xz/xy-slice at gridpoint pos. ! Uses a one-sided 4th order stencil. ! sgn = +1 for forward difference, sgn = -1 for backwards difference. ! ! Because of its original intended use in relation to solving ! characteristic equations on boundaries (NSCBC), this sub should ! return only PARTIAL derivatives, NOT COVARIANT. Applying the right ! scaling factors and connection terms should instead be done when ! solving the characteristic equations. ! ! 7-jul-08/arne: coded. ! 25-aug-09/axel: copied from deriv, but not adapted yet ! use Cdata ! real, dimension (mx,my,mz) :: f real, dimension (:,:) :: df real :: fac integer :: pos,sgn,j ! intent(in) :: f,pos,sgn,j intent(out) :: df ! if (j==1) then if (nxgrid/=1) then fac=1./12.*dx_1(pos) df = fac*(-sgn*25*f(pos,m1:m2,n1:n2)& +sgn*48*f(pos+sgn*1,m1:m2,n1:n2)& -sgn*36*f(pos+sgn*2,m1:m2,n1:n2)& +sgn*16*f(pos+sgn*3,m1:m2,n1:n2)& -sgn*3 *f(pos+sgn*4,m1:m2,n1:n2)) else df=0. if (ip<=5) print*, 'der_onesided_4_slice: Degenerate case in x-directder_onesided_4_sliceion' endif elseif (j==2) then if (nygrid/=1) then fac=1./12.*dy_1(pos) df = fac*(-sgn*25*f(l1:l2,pos,n1:n2)& +sgn*48*f(l1:l2,pos+sgn*1,n1:n2)& -sgn*36*f(l1:l2,pos+sgn*2,n1:n2)& +sgn*16*f(l1:l2,pos+sgn*3,n1:n2)& -sgn*3 *f(l1:l2,pos+sgn*4,n1:n2)) else df=0. if (ip<=5) print*, 'der_onesided_4_slice: Degenerate case in y-direction' endif elseif (j==3) then if (nzgrid/=1) then fac=1./12.*dz_1(pos) df = fac*(-sgn*25*f(l1:l2,m1:m2,pos)& +sgn*48*f(l1:l2,m1:m2,pos+sgn*1)& -sgn*36*f(l1:l2,m1:m2,pos+sgn*1)& +sgn*16*f(l1:l2,m1:m2,pos+sgn*1)& -sgn*3 *f(l1:l2,m1:m2,pos+sgn*1)) else df=0. if (ip<=5) print*, 'der_onesided_4_slice: Degenerate case in z-direction' endif endif endsubroutine !*********************************************************************** subroutine der_z(f,df) ! ! dummy routine ! use Cparam, only: mz, nz use Mpicomm, only: stop_it ! real, dimension (mz), intent(in) :: f real, dimension (nz), intent(out) :: df ! call stop_it("deriv_8th: der_z not implemented yet") ! endsubroutine der_z !*********************************************************************** subroutine der2_z(f,df2) ! ! dummy routine ! use Cparam, only: mz, nz use Mpicomm, only: stop_it ! real, dimension (mz), intent(in) :: f real, dimension (nz), intent(out) :: df2 ! call stop_it("deriv_8th: der2_z not implemented yet") ! endsubroutine der2_z !*********************************************************************** subroutine der2_minmod(f,j,delfk,delfkp1,delfkm1,k) ! ! Dummy routine ! intent(in) :: f,k,j intent(out) :: delfk,delfkp1,delfkm1 ! real, dimension (mx,my,mz,mfarray) :: f real, dimension (nx) :: delfk,delfkp1,delfkm1 integer :: j,k ! call fatal_error('der2_minmod','Not implemented for deriv_8th') ! ! Fill with dummy values to keep compiler quiet delfk(:) = j; delfkp1(:) = k; delfkm1(:) = f(l1,m1,n1,1) ! endsubroutine der2_minmod !*********************************************************************** subroutine finalize_deriv() ! ! Dummy ! endsubroutine finalize_deriv !*********************************************************************** subroutine deri_3d_inds(f,df,inds,j,lignored,lnometric) ! ! dummy routine for compatibility ! ! 26-mar-12/MR: coded ! ! use General, only: keep_compiler_quiet real, dimension (mx,my,mz) :: f real, dimension (nx) :: df integer :: j logical, optional :: lignored, lnometric integer, dimension(nx) :: inds ! intent(in) :: f,j,inds,lignored,lnometric intent(out) :: df ! ! call keep_compiler_quiet(df) call fatal_error('deri_3d_inds','Upwinding not implemented for nonuniform grids') ! ! dummy computation to avoid compiler warnings of unused variables if (present(lignored).and.present(lnometric)) & df = inds + f(l1:l2,1,1) + j ! endsubroutine deri_3d_inds !************************************************************************ logical function heatflux_deriv_x( f, inh, fac, topbot ) ! ! dummy routine ! ! 17-apr-12/MR: coded ! real, dimension(mx,my,mz,mfarray), intent(IN):: f real, dimension(my,mz) , intent(IN):: inh real , intent(IN):: fac integer , intent(IN):: topbot ! heatflux_deriv_x = .false. endfunction heatflux_deriv_x !*********************************************************************** endmodule Deriv