; ; Plot rhs of Poisson equation vs. numerical Laplacian of solution ; (should be the same) ; ; ; Usage: ; @toto1 ; .r start .r rall .compile xder2_2nd .compile yder2_2nd .compile zder2_2nd rho = exp(lnrho) rho1 = del2(potself) rr = sqrt(xx^2+yy^2+zz^2) psym = 4 yr = max(rho1[l1+3:l2-3,m1+3:m2-3,n1+3:n2-3]) * [0.3,1.1]*1 yr = [0.99,1.01] plot_binned, rr, rho1, $ xr=[-0.3 ,0.3], $ YRANGE=yr, $ PSYM=psym plot_binned, -rr, rho1, /OVER, PSYM=psym ;x_ = linspace([-0.2,2],1000) ;oplot, x_, exp(1.*exp(-x_^2/0.05^2)), COLOR=120 ; Same thing , but manually d2x = (shift(potself,1,0,0) + shift(potself,-1,0,0) - 2*potself)/dx^2 d2y = (shift(potself,0,1,0) + shift(potself,0,-1,0) - 2*potself)/dy^2 d2z = (shift(potself,0,0,1) + shift(potself,0,0,-1) - 2*potself)/dz^2 rho2 = d2x + d2y + d2z psym = 1 plot_binned, rr, rho2, /OVER, PSYM=psym plot_binned, -rr, rho2, /OVER, PSYM=psym plot_binned, rr, rho, /OVER, PSYM=4, COLOR=120 plot_binned, -rr, rho, /OVER, PSYM=4, COLOR=120 ;c = (1+cos(5*rho)) ;plot_binned, rr, rho + c*potself, /OVER, PSYM=2, COLOR=120 ;plot_binned, -rr, rho + c*potself, /OVER, PSYM=2, COLOR=120 esrg_legend, SPOS='tr', /BOX, $ ['del2(pot)', 'd2x+d2y_d2z(pot)', 'exp(-r^2/0.05^2)', 'rho'], $ PSYM=[psym,4,0,4], $ COLOR=[0,0,120,120]