Directory: ${PENCIL_HOME}/samples/kin-dynamo SVN Id: $Id$ Maintainer: Axel Brandenburg Added: 23-Apr-2004 Status: succeeds since 31 Jan 2009 (in this form) Recommended resolution: 32x32x32 for eta=0.1 is fine. At 16x16x16, eta_crit=0.1814, i.e. Rm_crit=5.514 Comments: This is a simulation of a Roberts flow dynamo. For a description see Sect. 4.2.2 of Brandenburg & Subramanian (2005). References: Brandenburg, A., & Subramanian, K.: 2005, ``Astrophysical magnetic fields and nonlinear dynamo theory,'' Phys. Rep. 417, 1-209 History: Until 8-aug-10, we used to have lbidiagonal_derij=F, which means that the much cheaper bi-diagonal scheme (which is the default since revision r8029 of 29-aug-2007 was *not* used. This is discussed in detail in the manual on page 127 (formerly page 100), see Fig.20 (former Fig.15). Notes: To simplify the input of in this sample, the specification of the input parameters cdt=0.4, cdtv=0.4, will be dropped in the future. The default is cdtv=0.25, so the result would change. Appendix: ========= Convergence experience (23-mar-08): For Roberts flow with positive helicity, 8^3, eta1=5.10, lam=-0.0028 eta1=5.15, lam=+2.76e-5 eta1=5.149, lam=-2.79e-05 eta1=5.1495 16^3, eta1=5.60, lam=0.003437430 eta1=5.56, lam=0.001851108 eta1=5.52, lam=0.000238567 eta1=5.514, lam=-5.2561e-06 eta1=5.5141, lam=0 32^3, eta1=5.56, lam=0.000912429 eta1=5.53, lam=0.00033877 eta1=5.512, lam=-0.000383483 eta1=5.522, lam=1.7171948e-05 eta1=5.5216, lam=0 eta=0.181, lam=8.69488e-05 So the 16^3 run with 6th order derivatives is accurate within 0.14%. and the 8^3 run is accurate within 6.7%. 8th-order 8^3, eta1=5.17, lam=+0.0003 eta1=5.15, lam=-0.0008 eta1=5.1646, lam=4.66e-07 16^3, eta1=5.52, lam=+6.1e-5 eta1=5.518, lam=-1.7888447e-05 eta1=5.5186, lam=6.4607785e-06 eta1=5.51844, lam=0 32^3, eta1=5.52, lam=-5.6851997e-05 eta1=5.521, lam=-1.6209860e-05 eta1=5.5214, lam=0. So the 16^3 run with 8th order derivatives is accurate to 0.05%. and the 8^3 run is accurate within 6.5%. 2nd-oder 8^3, eta1=5.1646, lam=-0.0032828332 eta1=5.23, lam=0.00018166056 eta1=5.22797, lam=7.3477581e-05 eta1=5.22658, lam=1e-17 16^3, eta1=5.5, lam=-0.0007099 eta1=5.52, lam=0.00010496959 eta1=5.5174, lam=7e-17 32^3, eta1=5.52, lam=-8.8257953e-05 eta1=5.54, lam=0.000713429 eta1=5.522, lam=0 So the 16^3 run with 2nd order derivatives is accurate to 0.07%. and the 8^3 run is accurate within 5.6%. 10th-order 8^3, eta1=5.150, lam=-0.00108046 (with default dt=0.215) eta1=5.170, lam=-1.13033e-07 lam=+2.02479e-09 eta1=5.171, lam=+5.34595e-05 lam=+5.34138e-05 16^3, eta1=5.522, lam=7.01168e-05 eta1=5.521, lam=3.03772e-05 eta1=5.520, lam=-9.90466e-06 eta1=5.52025, lam=-3.77597e-07 eta1=5.5203, lam=6.19646e-07 (with cdtv=.1) eta1=5.5203, lam=1.79842e-06 (with cdtv=.3) 32^3, eta1=5.52, lam=-6.41440e-05 (with default dt=0.017) eta1=5.521, lam=-2.47367e-05 eta1=5.522, lam=1.56453e-05 eta1=5.5216, lam=0 (interpolated) Timing results: 2nd order derivative: 0.60 us/pt/step 6th order derivative: 0.77 us/pt/step 8th order derivative: 0.88 us/pt/step 10th order derivative: 0.97 us/pt/step