;; ;; $Id$ ;; ;; Third derivative d^3 / dz^3 ;; - 6th-order (9-point stencil) for inner grid cells ;; - 4th-order (7-point stencil) for non-periodic boundary grid cells ; ; 12-Oct-2014/Bourdin.KIS: coded ; function zder3,f,ghost=ghost,bcx=bcx,bcy=bcy,bcz=bcz,param=param,t=t COMPILE_OPT IDL2,HIDDEN ; common cdat, x, y, z, mx, my, mz, nw, ntmax, date0, time0, nghostx, nghosty, nghostz common cdat_grid,dx_1,dy_1,dz_1,dx_tilde,dy_tilde,dz_tilde,lequidist,lperi,ldegenerated common cdat_coords, coord_system common pc_precision, zero, one, precision, data_type, data_bytes, type_idl ; ; Default values. ; default, one, 1.d0 default, ghost, 0 ; ; Calculate fmx, fmy, and fmz, based on the input array size. ; s = size(f) if ((s[0] lt 3) or (s[0] gt 4)) then $ message, 'zder3_6th_ghost: not implemented for '+strtrim(s[0],2)+'-D arrays' d = make_array(size=s) fmx = s[1] & fmy = s[2] & fmz = s[3] l1 = nghostx & l2 = fmx-nghostx-1 m1 = nghosty & m2 = fmy-nghosty-1 n1 = nghostz & n2 = fmz-nghostz-1 ; ; Check for degenerate case (no x-derivative) ; if (ldegenerated[0] or (fmx eq 1)) then return, d ; if (lequidist[1]) then begin fdz = dz_1[l1]^3/240. endif else begin if (fmx ne mx) then $ message, "zder3_6th_ghost: not implemented for subvolumes on a non-equidistant grid in x." fdz = one/240. endelse ; if (lperi[1]) then begin d[l1:l2,m1:m2,n1:n2,*] = $ (488.*fdz)*(f[l1-1:l2-1,m1:m2,n1:n2,*]-f[l1+1:l2+1,m1:m2,n1:n2,*]) $ - (338.*fdz)*(f[l1-2:l2-2,m1:m2,n1:n2,*]-f[l1+2:l2+2,m1:m2,n1:n2,*]) $ + (72.*fdz)*(f[l1-3:l2-3,m1:m2,n1:n2,*]-f[l1+3:l2+3,m1:m2,n1:n2,*]) $ - (7.*fdz)*(shift (f[l1:l2,m1:m2,n1:n2,*], 0, 0, -4, 0)-shift (f[l1:l2,m1:m2,n1:n2,*], 0, 0, +4, 0)) end else begin ; inner grid points (6th order) d[l1+1:l2-1,m1:m2,n1:n2,*] = $ (488.*fdz)*(f[l1-0:l2-2,m1:m2,n1:n2,*]-f[l1+2:l2+0,m1:m2,n1:n2,*]) $ - (338.*fdz)*(f[l1-1:l2-3,m1:m2,n1:n2,*]-f[l1+3:l2+1,m1:m2,n1:n2,*]) $ + (72.*fdz)*(f[l1-2:l2-4,m1:m2,n1:n2,*]-f[l1+4:l2+2,m1:m2,n1:n2,*]) $ - (7.*fdz)*(f[l1-3:l2-5,m1:m2,n1:n2,*]-f[l1+5:l2+3,m1:m2,n1:n2,*]) ; boundary grid points (4th order) ; −49/8 29 −461/8 62 −307/8 13 −15/8 d[l1,m1:m2,n1:n2,*] = $ (14880.*fdz)*f[l1,m1:m2,n1:n2,*] $ -(13830.*fdz)*f[l1-1,m1:m2,n1:n2,*]-(9210.*fdz)*f[l1+1,m1:m2,n1:n2,*] $ + (6960.*fdz)*f[l1-2,m1:m2,n1:n2,*]+(3120.*fdz)*f[l1+2,m1:m2,n1:n2,*] $ - (1470.*fdz)*f[l1-3,m1:m2,n1:n2,*]- (450.*fdz)*f[l1+3,m1:m2,n1:n2,*] d[l2,m1:m2,n1:n2,*] = $ (14880.*fdz)*f[l2,m1:m2,n1:n2,*] $ -(13830.*fdz)*f[l1-1,m1:m2,n1:n2,*]-(9210.*fdz)*f[l1+1,m1:m2,n1:n2,*] $ + (6960.*fdz)*f[l1-2,m1:m2,n1:n2,*]+(3120.*fdz)*f[l1+2,m1:m2,n1:n2,*] $ - (1470.*fdz)*f[l1-3,m1:m2,n1:n2,*]- (450.*fdz)*f[l1+3,m1:m2,n1:n2,*] end ; if (not lequidist[0]) then begin ; Nonuniform mesh correction: ; d3f(xi)/dz3 = f'''*xi'^3 + 3*f"*xi'*xi" + f'*xi''' ; will also work on subvolumes like zder3(ss[*,10:16,20:26]) df_dz = zder(f) d2f_dz2 = zder2(f) d[l1:l2,m1:m2,n1:n2,*] *= dz_1[l1:l2]^3 message, "zder3: 'd2xi_dz2' is not yet implemented, needs more than 'dz_tilde'..." df_dz[l1:l2,m1:m2,n1:n2,*] *= d2xi_dz2[l1:l2] d2f_dz2[l1:l2,m1:m2,n1:n2,*] *= dz_tilde[l1:l2] d += df_dz endif ; ; Set ghost zones. ; if (ghost) then d=pc_setghost(d,bcx=bcx,bcy=bcy,bcz=bcz,param=param,t=t) ; return, d ; end