;; ;; $Id$ ;; ;; Second derivative d^2 / dy^2 ;; - 6th-order (7-point stencil) ;; - with ghost cells ;; - on potentially non-equidistant grid ;; function yder2,f,ghost=ghost,bcx=bcx,bcy=bcy,bcz=bcz,param=param,t=t COMPILE_OPT IDL2,HIDDEN ; common cdat, x, y, z, mx, my, mz, nw, ntmax, date0, time0, nghostx, nghosty, nghostz common cdat_grid,dx_1,dy_1,dz_1,dx_tilde,dy_tilde,dz_tilde,lequidist,lperi,ldegenerated common cdat_coords, coord_system common pc_precision, zero, one, precision, data_type, data_bytes, type_idl ; ; Default values. ; default, one, 1.d0 default, ghost, 0 ; ;AB: the following should not be correct ; if (coord_system ne 'cartesian') then $ ; message, "yder2_6th_ghost: not yet implemented for coord_system='" + coord_system + "'" ; ; Calculate fmx, fmy, and fmz, based on the input array size. ; s = size(f) if ((s[0] lt 3) or (s[0] gt 4)) then $ message, 'yder2_6th_ghost: not implemented for '+strtrim(s[0],2)+'-D arrays' d = make_array(size=s) fmx = s[1] & fmy = s[2] & fmz = s[3] l1 = nghostx & l2 = fmx-nghostx-1 m1 = nghosty & m2 = fmy-nghosty-1 n1 = nghostz & n2 = fmz-nghostz-1 ; ; Check for degenerate case (no y-derivative) ; if (ldegenerated[1] or (fmy eq 1)) then return, d ; if (lequidist[1]) then begin fdy = dy_1[m1]^2/180. endif else begin if (fmy ne my) then $ message, "yder2_6th_ghost: not implemented for subvolumes on a non-equidistant grid in y." fdy = one/180. endelse ; d[l1:l2,m1:m2,n1:n2,*] = $ (-490.*fdy)*f[l1:l2,m1:m2,n1:n2,*] $ + (270.*fdy)*(f[l1:l2,m1-1:m2-1,n1:n2,*]+f[l1:l2,m1+1:m2+1,n1:n2,*]) $ - (27.*fdy)*(f[l1:l2,m1-2:m2-2,n1:n2,*]+f[l1:l2,m1+2:m2+2,n1:n2,*]) $ + (2.*fdy)*(f[l1:l2,m1-3:m2-3,n1:n2,*]+f[l1:l2,m1+3:m2+3,n1:n2,*]) ; if (not lequidist[1]) then begin ; Nonuniform mesh correction: ; d2f/dy2 = f"*psi'^2 + psi"f', see also the manual. ; will also work on subvolumes like yder2(ss[10:16,*,20:26]) df_dy = yder(f) for m = m1, m2 do begin d[l1:l2,m,n1:n2,*] *= dy_1[m]^2 df_dy[l1:l2,m,n1:n2,*] *= dy_tilde[m] endfor d += df_dy endif ; ; Set ghost zones. ; if (any (coord_system eq ['cylindric','spherical'])) then $ for l = l1, l2 do d[l,*,*,*] /= x[l]^2 ; if (ghost) then d=pc_setghost(d,bcx=bcx,bcy=bcy,bcz=bcz,param=param,t=t) ; return, d ; end